-
Je něco špatně v tomto záznamu ?
Twisting a β-Carotene, an Adaptive Trick from Nature for Dissipating Energy during Photoprotection
MJ. Llansola-Portoles, R. Sobotka, E. Kish, MK. Shukla, AA. Pascal, T. Polívka, B. Robert,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Free Medical Journals
od 2008 do Před 1 rokem
Freely Accessible Science Journals
od 1905 do Před 1 rokem
PubMed Central
od 2005
Europe PubMed Central
od 2005 do Před 1 rokem
Open Access Digital Library
od 1905-10-01
Open Access Digital Library
od 1905-10-01
Elsevier Open Access Journals
od 1905-10-01
ROAD: Directory of Open Access Scholarly Resources
od 1905
PubMed
27994060
DOI
10.1074/jbc.m116.753723
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny chemie genetika MeSH
- beta-karoten chemie genetika MeSH
- kvarterní struktura proteinů MeSH
- proteinové domény MeSH
- sekundární struktura proteinů MeSH
- světlosběrné proteinové komplexy chemie genetika MeSH
- Synechocystis chemie genetika MeSH
- Publikační typ
- časopisecké články MeSH
Cyanobacteria possess a family of one-helix high light-inducible proteins (Hlips) that are homologous to light-harvesting antenna of plants and algae. An Hlip protein, high light-inducible protein D (HliD) purified as a small complex with the Ycf39 protein is evaluated using resonance Raman spectroscopy. We show that the HliD binds two different β-carotenes, each present in two non-equivalent binding pockets with different conformations, having their (0,0) absorption maxima at 489 and 522 nm, respectively. Both populations of β-carotene molecules were in all-trans configuration and the absorption position of the farthest blue-shifted β-carotene was attributed entirely to the polarizability of the environment in its binding pocket. In contrast, the absorption maximum of the red-shifted β-carotene was attributed to two different factors: the polarizability of the environment in its binding pocket and, more importantly, to the conformation of its β-rings. This second β-carotene has highly twisted β-rings adopting a flat conformation, which implies that the effective conjugation length N is extended up to 10.5 modifying the energetic levels. This increase in N will also result in a lower S1 energy state, which may provide a permanent energy dissipation channel. Analysis of the carbonyl stretching region for chlorophyll a excitations indicates that the HliD binds six chlorophyll a molecules in five non-equivalent binding sites, with at least one chlorophyll a presenting a slight distortion to its macrocycle. The binding modes and conformations of HliD-bound pigments are discussed with respect to the known structures of LHCII and CP29.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17023419
- 003
- CZ-PrNML
- 005
- 20170720122241.0
- 007
- ta
- 008
- 170720s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1074/jbc.M116.753723 $2 doi
- 035 __
- $a (PubMed)27994060
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Llansola-Portoles, Manuel J $u From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France, manuel.llansola@cea.fr.
- 245 10
- $a Twisting a β-Carotene, an Adaptive Trick from Nature for Dissipating Energy during Photoprotection / $c MJ. Llansola-Portoles, R. Sobotka, E. Kish, MK. Shukla, AA. Pascal, T. Polívka, B. Robert,
- 520 9_
- $a Cyanobacteria possess a family of one-helix high light-inducible proteins (Hlips) that are homologous to light-harvesting antenna of plants and algae. An Hlip protein, high light-inducible protein D (HliD) purified as a small complex with the Ycf39 protein is evaluated using resonance Raman spectroscopy. We show that the HliD binds two different β-carotenes, each present in two non-equivalent binding pockets with different conformations, having their (0,0) absorption maxima at 489 and 522 nm, respectively. Both populations of β-carotene molecules were in all-trans configuration and the absorption position of the farthest blue-shifted β-carotene was attributed entirely to the polarizability of the environment in its binding pocket. In contrast, the absorption maximum of the red-shifted β-carotene was attributed to two different factors: the polarizability of the environment in its binding pocket and, more importantly, to the conformation of its β-rings. This second β-carotene has highly twisted β-rings adopting a flat conformation, which implies that the effective conjugation length N is extended up to 10.5 modifying the energetic levels. This increase in N will also result in a lower S1 energy state, which may provide a permanent energy dissipation channel. Analysis of the carbonyl stretching region for chlorophyll a excitations indicates that the HliD binds six chlorophyll a molecules in five non-equivalent binding sites, with at least one chlorophyll a presenting a slight distortion to its macrocycle. The binding modes and conformations of HliD-bound pigments are discussed with respect to the known structures of LHCII and CP29.
- 650 _2
- $a bakteriální proteiny $x chemie $x genetika $7 D001426
- 650 _2
- $a světlosběrné proteinové komplexy $x chemie $x genetika $7 D045342
- 650 _2
- $a proteinové domény $7 D000072417
- 650 _2
- $a kvarterní struktura proteinů $7 D020836
- 650 _2
- $a sekundární struktura proteinů $7 D017433
- 650 _2
- $a Synechocystis $x chemie $x genetika $7 D046939
- 650 _2
- $a beta-karoten $x chemie $x genetika $7 D019207
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Sobotka, Roman $u the Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, 379 81, Czech Republic, and.
- 700 1_
- $a Kish, Elizabeth $u From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France.
- 700 1_
- $a Shukla, Mahendra Kumar $u the Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, 379 81, Czech Republic, and.
- 700 1_
- $a Pascal, Andrew A $u From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France.
- 700 1_
- $a Polívka, Tomáš $u the Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, České Budějovice 370 01, Czech Republic.
- 700 1_
- $a Robert, Bruno $u From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France.
- 773 0_
- $w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 292, č. 4 (2017), s. 1396-1403
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27994060 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170720 $b ABA008
- 991 __
- $a 20170720122734 $b ABA008
- 999 __
- $a ok $b bmc $g 1239100 $s 984332
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 292 $c 4 $d 1396-1403 $e 20161219 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
- LZP __
- $a Pubmed-20170720