• Je něco špatně v tomto záznamu ?

Inverse modelling for real-time estimation of radiological consequences in the early stage of an accidental radioactivity release

P. Pecha, V. Šmídl,

. 2016 ; 164 (-) : 377-394. [pub] 20160915

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17023705

A stepwise sequential assimilation algorithm is proposed based on an optimisation approach for recursive parameter estimation and tracking of radioactive plume propagation in the early stage of a radiation accident. Predictions of the radiological situation in each time step of the plume propagation are driven by an existing short-term meteorological forecast and the assimilation procedure manipulates the model parameters to match the observations incoming concurrently from the terrain. Mathematically, the task is a typical ill-posed inverse problem of estimating the parameters of the release. The proposed method is designated as a stepwise re-estimation of the source term release dynamics and an improvement of several input model parameters. It results in a more precise determination of the adversely affected areas in the terrain. The nonlinear least-squares regression methodology is applied for estimation of the unknowns. The fast and adequately accurate segmented Gaussian plume model (SGPM) is used in the first stage of direct (forward) modelling. The subsequent inverse procedure infers (re-estimates) the values of important model parameters from the actual observations. Accuracy and sensitivity of the proposed method for real-time forecasting of the accident propagation is studied. First, a twin experiment generating noiseless simulated "artificial" observations is studied to verify the minimisation algorithm. Second, the impact of the measurement noise on the re-estimated source release rate is examined. In addition, the presented method can be used as a proposal for more advanced statistical techniques using, e.g., importance sampling.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17023705
003      
CZ-PrNML
005      
20170720123547.0
007      
ta
008      
170720s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jenvrad.2016.06.016 $2 doi
035    __
$a (PubMed)27619559
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Pecha, Petr $u Institute of Information Theory and Automation of the Czech Academy of Sciences, v.v.i., Pod Vodarenskou vezi 4, 182 08, Prague 8, Czech Republic. Electronic address: pecha@utia.cas.cz.
245    10
$a Inverse modelling for real-time estimation of radiological consequences in the early stage of an accidental radioactivity release / $c P. Pecha, V. Šmídl,
520    9_
$a A stepwise sequential assimilation algorithm is proposed based on an optimisation approach for recursive parameter estimation and tracking of radioactive plume propagation in the early stage of a radiation accident. Predictions of the radiological situation in each time step of the plume propagation are driven by an existing short-term meteorological forecast and the assimilation procedure manipulates the model parameters to match the observations incoming concurrently from the terrain. Mathematically, the task is a typical ill-posed inverse problem of estimating the parameters of the release. The proposed method is designated as a stepwise re-estimation of the source term release dynamics and an improvement of several input model parameters. It results in a more precise determination of the adversely affected areas in the terrain. The nonlinear least-squares regression methodology is applied for estimation of the unknowns. The fast and adequately accurate segmented Gaussian plume model (SGPM) is used in the first stage of direct (forward) modelling. The subsequent inverse procedure infers (re-estimates) the values of important model parameters from the actual observations. Accuracy and sensitivity of the proposed method for real-time forecasting of the accident propagation is studied. First, a twin experiment generating noiseless simulated "artificial" observations is studied to verify the minimisation algorithm. Second, the impact of the measurement noise on the re-estimated source release rate is examined. In addition, the presented method can be used as a proposal for more advanced statistical techniques using, e.g., importance sampling.
650    _2
$a algoritmy $7 D000465
650    _2
$a počítačová simulace $7 D003198
650    _2
$a předpověď $7 D005544
650    12
$a teoretické modely $7 D008962
650    _2
$a normální rozdělení $7 D016011
650    _2
$a monitorování radiace $x metody $7 D011834
650    12
$a únik radioaktivních látek $7 D018788
650    12
$a radioaktivita $7 D011851
655    _2
$a časopisecké články $7 D016428
700    1_
$a Šmídl, Václav $u Institute of Information Theory and Automation of the Czech Academy of Sciences, v.v.i., Pod Vodarenskou vezi 4, 182 08, Prague 8, Czech Republic.
773    0_
$w MED00002660 $t Journal of environmental radioactivity $x 1879-1700 $g Roč. 164, č. - (2016), s. 377-394
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27619559 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170720 $b ABA008
991    __
$a 20170720124040 $b ABA008
999    __
$a ok $b bmc $g 1239386 $s 984618
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 164 $c - $d 377-394 $e 20160915 $i 1879-1700 $m Journal of environmental radioactivity $n J Environ Radioact $x MED00002660
LZP    __
$a Pubmed-20170720

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...