-
Je něco špatně v tomto záznamu ?
Original Research: Combined model of bladder detrusor smooth muscle and interstitial cells
J. Rosenberg, M. Byrtus, M. Stengl,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
PubMed
27328937
DOI
10.1177/1535370216655402
Knihovny.cz E-zdroje
- MeSH
- Ca2+-ATPasy metabolismus MeSH
- endoplazmatické retikulum účinky léků metabolismus MeSH
- hyperaktivní močový měchýř patofyziologie MeSH
- lidé MeSH
- membránové potenciály účinky léků fyziologie MeSH
- močový měchýř cytologie fyziologie MeSH
- myocyty hladké svaloviny účinky léků fyziologie MeSH
- počítačová simulace * MeSH
- ryanodin farmakologie MeSH
- sarkoplazmatické retikulum účinky léků metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Although patients with lower urinary tract symptoms constitute a large and still growing population, understanding of bladder detrusor muscle physiology remains limited. Understanding the interactions between the detrusor smooth muscle cells and other bladder cell types (e.g. interstitial cells, IC) that may significantly contribute to coordinating and modulating detrusor contractions represents a considerable challenge. Computer modeling could help to elucidate some properties that are difficult to address experimentally; therefore, we developed in silico models of detrusor smooth muscle cell and interstitial cells, coupled through gap junctions. The models include all of the major ion conductances and transporters described in smooth muscle cell and interstitial cells in the literature. The model of normal detrusor muscle (smooth muscle cell and interstitial cells coupled through gap junctions) completely reproduced the experimental results obtained with detrusor strips in the presence of several pharmacological interventions (ryanodine, caffeine, nimodipine), whereas the model of smooth muscle cell alone (without interstitial cells) failed to reproduce the experimental results. Next, a model of overactive bladder, a highly prevalent clinical condition in both men and women with increasing incidence at older ages, was produced by modifying several processes as reported previously: a reduction of Ca(2+)-release through ryanodine receptors and a reduction of Ca(2+)-dependent K(+)-conductance with augmented gap junctional coupling. This model was also able to reproduce the pharmacological modulation of overactive bladder. In conclusion, a model of bladder detrusor muscle was developed that reproduced experimental results obtained in both normal and overactive bladder preparations. The results indicate that the non-smooth muscle cells of the detrusor (interstitial cells) contribute significantly to the contractile behavior of bladder detrusor muscle and should not be neglected. The model suggests that reduced Ca(2+)-release through ryanodine receptors and Ca(2+)-dependent K(+)-conductance together with augmented gap junctional coupling might play a major role in overactive bladder pathogenesis.
Department of Mechanics University of West Bohemia Pilsen 30614 Czech Republic
New Technologies Research Center University of West Bohemia Pilsen 30614 Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17023894
- 003
- CZ-PrNML
- 005
- 20170906132415.0
- 007
- ta
- 008
- 170720s2016 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1177/1535370216655402 $2 doi
- 035 __
- $a (PubMed)27328937
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Rosenberg, Josef $u New Technologies Research Center, University of West Bohemia, Pilsen 30614, Czech Republic.
- 245 10
- $a Original Research: Combined model of bladder detrusor smooth muscle and interstitial cells / $c J. Rosenberg, M. Byrtus, M. Stengl,
- 520 9_
- $a Although patients with lower urinary tract symptoms constitute a large and still growing population, understanding of bladder detrusor muscle physiology remains limited. Understanding the interactions between the detrusor smooth muscle cells and other bladder cell types (e.g. interstitial cells, IC) that may significantly contribute to coordinating and modulating detrusor contractions represents a considerable challenge. Computer modeling could help to elucidate some properties that are difficult to address experimentally; therefore, we developed in silico models of detrusor smooth muscle cell and interstitial cells, coupled through gap junctions. The models include all of the major ion conductances and transporters described in smooth muscle cell and interstitial cells in the literature. The model of normal detrusor muscle (smooth muscle cell and interstitial cells coupled through gap junctions) completely reproduced the experimental results obtained with detrusor strips in the presence of several pharmacological interventions (ryanodine, caffeine, nimodipine), whereas the model of smooth muscle cell alone (without interstitial cells) failed to reproduce the experimental results. Next, a model of overactive bladder, a highly prevalent clinical condition in both men and women with increasing incidence at older ages, was produced by modifying several processes as reported previously: a reduction of Ca(2+)-release through ryanodine receptors and a reduction of Ca(2+)-dependent K(+)-conductance with augmented gap junctional coupling. This model was also able to reproduce the pharmacological modulation of overactive bladder. In conclusion, a model of bladder detrusor muscle was developed that reproduced experimental results obtained in both normal and overactive bladder preparations. The results indicate that the non-smooth muscle cells of the detrusor (interstitial cells) contribute significantly to the contractile behavior of bladder detrusor muscle and should not be neglected. The model suggests that reduced Ca(2+)-release through ryanodine receptors and Ca(2+)-dependent K(+)-conductance together with augmented gap junctional coupling might play a major role in overactive bladder pathogenesis.
- 650 _2
- $a Ca2+-ATPasy $x metabolismus $7 D000252
- 650 12
- $a počítačová simulace $7 D003198
- 650 _2
- $a endoplazmatické retikulum $x účinky léků $x metabolismus $7 D004721
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a membránové potenciály $x účinky léků $x fyziologie $7 D008564
- 650 _2
- $a myocyty hladké svaloviny $x účinky léků $x fyziologie $7 D032389
- 650 _2
- $a ryanodin $x farmakologie $7 D012433
- 650 _2
- $a sarkoplazmatické retikulum $x účinky léků $x metabolismus $7 D012519
- 650 _2
- $a močový měchýř $x cytologie $x fyziologie $7 D001743
- 650 _2
- $a hyperaktivní močový měchýř $x patofyziologie $7 D053201
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Byrtus, Miroslav $u Department of Mechanics, University of West Bohemia, Pilsen 30614, Czech Republic.
- 700 1_
- $a Stengl, Milan $u Department of Physiology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen 32300, Czech Republic Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen 32300, Czech Republic milan.stengl@lfp.cuni.cz.
- 773 0_
- $w MED00005629 $t Experimental biology and medicine (Maywood, N.J.) $x 1535-3699 $g Roč. 241, č. 16 (2016), s. 1853-64
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27328937 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170720 $b ABA008
- 991 __
- $a 20170906133013 $b ABA008
- 999 __
- $a ok $b bmc $g 1239575 $s 984807
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 241 $c 16 $d 1853-64 $e 20160620 $i 1535-3699 $m Experimental biology and medicine $n Exp Biol Med (Maywood) $x MED00005629
- LZP __
- $a Pubmed-20170720