• Je něco špatně v tomto záznamu ?

Solution structure of domain 1.1 of the σ(A) factor from Bacillus subtilis is preformed for binding to the RNA polymerase core

M. Zachrdla, P. Padrta, A. Rabatinová, H. Šanderová, I. Barvík, L. Krásný, L. Žídek,

. 2017 ; 292 (28) : 11610-11617. [pub] 20170524

Jazyk angličtina Země Spojené státy americké

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17030793

Bacterial RNA polymerase (RNAP) requires σ factors to recognize promoter sequences. Domain 1.1 of primary σ factors (σ1.1) prevents their binding to promoter DNA in the absence of RNAP, and when in complex with RNAP, it occupies the DNA-binding channel of RNAP. Currently, two 3D structures of σ1.1 are available: from Escherichia coli in complex with RNAP and from T. maritima solved free in solution. However, these two structures significantly differ, and it is unclear whether this difference is due to an altered conformation upon RNAP binding or to differences in intrinsic properties between the proteins from these two distantly related species. Here, we report the solution structure of σ1.1 from the Gram-positive bacterium Bacillus subtilis We found that B. subtilis σ1.1 is highly compact because of additional stabilization not present in σ1.1 from the other two species and that it is more similar to E. coli σ1.1. Moreover, modeling studies suggested that B. subtilis σ1.1 requires minimal conformational changes for accommodating RNAP in the DNA channel, whereas T. maritima σ1.1 must be rearranged to fit therein. Thus, the mesophilic species B. subtilis and E. coli share the same σ1.1 fold, whereas the fold of σ1.1 from the thermophile T. maritima is distinctly different. Finally, we describe an intriguing similarity between σ1.1 and δ, an RNAP-associated protein in B. subtilis, bearing implications for the so-far unknown binding site of δ on RNAP. In conclusion, our results shed light on the conformational changes of σ1.1 required for its accommodation within bacterial RNAP.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17030793
003      
CZ-PrNML
005      
20171025122745.0
007      
ta
008      
171025s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1074/jbc.M117.784074 $2 doi
035    __
$a (PubMed)28539362
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zachrdla, Milan $u From the Central European Institute of Technology and. the National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic.
245    10
$a Solution structure of domain 1.1 of the σ(A) factor from Bacillus subtilis is preformed for binding to the RNA polymerase core / $c M. Zachrdla, P. Padrta, A. Rabatinová, H. Šanderová, I. Barvík, L. Krásný, L. Žídek,
520    9_
$a Bacterial RNA polymerase (RNAP) requires σ factors to recognize promoter sequences. Domain 1.1 of primary σ factors (σ1.1) prevents their binding to promoter DNA in the absence of RNAP, and when in complex with RNAP, it occupies the DNA-binding channel of RNAP. Currently, two 3D structures of σ1.1 are available: from Escherichia coli in complex with RNAP and from T. maritima solved free in solution. However, these two structures significantly differ, and it is unclear whether this difference is due to an altered conformation upon RNAP binding or to differences in intrinsic properties between the proteins from these two distantly related species. Here, we report the solution structure of σ1.1 from the Gram-positive bacterium Bacillus subtilis We found that B. subtilis σ1.1 is highly compact because of additional stabilization not present in σ1.1 from the other two species and that it is more similar to E. coli σ1.1. Moreover, modeling studies suggested that B. subtilis σ1.1 requires minimal conformational changes for accommodating RNAP in the DNA channel, whereas T. maritima σ1.1 must be rearranged to fit therein. Thus, the mesophilic species B. subtilis and E. coli share the same σ1.1 fold, whereas the fold of σ1.1 from the thermophile T. maritima is distinctly different. Finally, we describe an intriguing similarity between σ1.1 and δ, an RNAP-associated protein in B. subtilis, bearing implications for the so-far unknown binding site of δ on RNAP. In conclusion, our results shed light on the conformational changes of σ1.1 required for its accommodation within bacterial RNAP.
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a Bacillus subtilis $x metabolismus $7 D001412
650    _2
$a bakteriální proteiny $x chemie $x genetika $x metabolismus $7 D001426
650    _2
$a vazebná místa $7 D001665
650    _2
$a izotopy uhlíku $7 D002247
650    _2
$a konzervovaná sekvence $7 D017124
650    _2
$a DNA bakterií $x chemie $x metabolismus $7 D004269
650    _2
$a DNA řízené RNA-polymerasy $x chemie $x genetika $x metabolismus $7 D012321
650    12
$a molekulární modely $7 D008958
650    _2
$a izotopy dusíku $7 D009587
650    _2
$a konformace nukleové kyseliny $7 D009690
650    _2
$a peptidové fragmenty $x chemie $x genetika $x metabolismus $7 D010446
650    _2
$a konformace proteinů $7 D011487
650    _2
$a sbalování proteinů $7 D017510
650    _2
$a interakční proteinové domény a motivy $7 D054730
650    _2
$a stabilita proteinů $7 D055550
650    _2
$a podjednotky proteinů $7 D021122
650    _2
$a rekombinantní proteiny $x chemie $x metabolismus $7 D011994
650    _2
$a sekvenční seřazení $7 D016415
650    _2
$a sigma faktor $x chemie $x genetika $x metabolismus $7 D012808
650    _2
$a strukturní homologie proteinů $7 D040681
650    _2
$a Thermotoga maritima $x enzymologie $7 D020124
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
700    1_
$a Padrta, Petr $u From the Central European Institute of Technology and. the National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic.
700    1_
$a Rabatinová, Alžbeta $u the Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, The Czech Academy of Sciences, CZ-14220 Prague 4, Czech Republic, and.
700    1_
$a Šanderová, Hana $u the Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, The Czech Academy of Sciences, CZ-14220 Prague 4, Czech Republic, and.
700    1_
$a Barvík, Ivan $u the Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, CZ-12116 Prague 2, Czech Republic.
700    1_
$a Krásný, Libor $u the Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, The Czech Academy of Sciences, CZ-14220 Prague 4, Czech Republic, and krasny@biomed.cas.cz.
700    1_
$a Žídek, Lukáš $u From the Central European Institute of Technology and lzidek@chemi.muni.cz. the National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic.
773    0_
$w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 292, č. 28 (2017), s. 11610-11617
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28539362 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171025122827 $b ABA008
999    __
$a ok $b bmc $g 1254386 $s 991820
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 292 $c 28 $d 11610-11617 $e 20170524 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...