• Je něco špatně v tomto záznamu ?

Prediction of neonatal respiratory morbidity by quantitative ultrasound lung texture analysis: a multicenter study

M. Palacio, E. Bonet-Carne, T. Cobo, A. Perez-Moreno, J. Sabrià, J. Richter, M. Kacerovsky, B. Jacobsson, RA. García-Posada, F. Bugatto, R. Santisteve, À. Vives, M. Parra-Cordero, E. Hernandez-Andrade, JL. Bartha, P. Carretero-Lucena, KL. Tan, R....

. 2017 ; 217 (2) : 196.e1-196.e14. [pub] 20170323

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, multicentrická studie

Perzistentní odkaz   https://www.medvik.cz/link/bmc17030932

BACKGROUND: Prediction of neonatal respiratory morbidity may be useful to plan delivery in complicated pregnancies. The limited predictive performance of the current diagnostic tests together with the risks of an invasive procedure restricts the use of fetal lung maturity assessment. OBJECTIVE: The objective of the study was to evaluate the performance of quantitative ultrasound texture analysis of the fetal lung (quantusFLM) to predict neonatal respiratory morbidity in preterm and early-term (<39.0 weeks) deliveries. STUDY DESIGN: This was a prospective multicenter study conducted in 20 centers worldwide. Fetal lung ultrasound images were obtained at 25.0-38.6 weeks of gestation within 48 hours of delivery, stored in Digital Imaging and Communication in Medicine format, and analyzed with quantusFLM. Physicians were blinded to the analysis. At delivery, perinatal outcomes and the occurrence of neonatal respiratory morbidity, defined as either respiratory distress syndrome or transient tachypnea of the newborn, were registered. The performance of the ultrasound texture analysis test to predict neonatal respiratory morbidity was evaluated. RESULTS: A total of 883 images were collected, but 17.3% were discarded because of poor image quality or exclusion criteria, leaving 730 observations for the final analysis. The prevalence of neonatal respiratory morbidity was 13.8% (101 of 730). The quantusFLM predicted neonatal respiratory morbidity with a sensitivity, specificity, positive and negative predictive values of 74.3% (75 of 101), 88.6% (557 of 629), 51.0% (75 of 147), and 95.5% (557 of 583), respectively. Accuracy was 86.5% (632 of 730) and positive and negative likelihood ratios were 6.5 and 0.3, respectively. CONCLUSION: The quantusFLM predicted neonatal respiratory morbidity with an accuracy similar to that previously reported for other tests with the advantage of being a noninvasive technique.

Althaia Xarxa Assistencial Universitària de Manresa Hospital de Sant Joan de Déu Manresa Spain

BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine IDIBAPS University of Barcelona Barcelona Spain

Center for Molecular Medicine and Genetics Wayne State University Detroit MI

Centre for Biomedical Research on Rare Diseases Barcelona Spain

Clínica del Prado Medellín Antioquía Colombia

Department of Epidemiology and Biostatistics Michigan State University East Lansing MI

Department of Genetics and Bioinformatics Area of Health Data and Digitalization Norwegian Institute of Public Health Oslo Norway

Department of Maternal Fetal Medicine KK Women's and Children's Hospital Singapore

Department of Obstetrics and Gynaecology Consorci Sanitari de Terrassa Terrassa Spain

Department of Obstetrics and Gynaecology University Hospitals Leuven and Academic Department of Development and Regeneration Organ System Cluster KU Leuven Leuven Belgium

Department of Obstetrics and Gynecology Sahlgrenska University Hospital Ostra Gothenburg University Gothenburg Sweden

Department of Obstetrics and Gynecology University Hospital Hradec Kralove and Charles University Prague Faculty of Medicine in Hradec Kralove Hradec Kralove Czech Republic

Department of Obstetrics and Gynecology University of Michigan Ann Arbor MI

Department of Obstetrics and Gynecology University of Tennessee Health Science Center Memphis TN

Department of Obstetrics and Gynecology Wayne State University School of Medicine Wayne State University Detroit MI

Division of Fetal Maternal Medicine Department of Obstetrics and Gynecology University Hospital Puerta del Mar Cadiz Spain

Division of Maternal and Fetal Medicine University Hospital La Paz Madrid Spain

Division of Maternal Fetal Medicine Department of Obstetrics and Gynaecology University of Wisconsin Madison WI

Fernández Hospital Hyberabad India

Fetal Medicine Research Unit Children's and Women's Specialty Hospital of Queretaro Unidad de Investigación en Neurodesarrollo Instituto de Neurobiología UNAM Juriquilla Queretaro Mexico

Fetal Medicine Unit Clinic University Hospital Virgen de la Arrixaca Murcia Spain

Hospital Nostra Senyora de Meritxell Escaldes Engordany Andorra

Maternal Fetal Medicine Unit Department of Obstetrics and Gynaecology University Hospital of Granada Granada Spain

Maternal Fetal Medicine Unit Department of Obstetrics and Gynecology University of Chile Hospital Santiago de Chile Chile

Perinatology Research Branch Program for Perinatal Research and Obstetrics Division of Intramural Research Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health Bethesda MD and Detroit MI

Royal Prince Alfred Hospital Sydney University of Sydney Sydney New South Wales Australia

Transmural Biotech SL Barcelona Spain

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17030932
003      
CZ-PrNML
005      
20171030102736.0
007      
ta
008      
171025s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.ajog.2017.03.016 $2 doi
035    __
$a (PubMed)28342715
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Palacio, Montse $u BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (Centro de Investigación Biomédica en Red Enfermedades Raras), Barcelona, Spain. Electronic address: mpalacio@clinic.cat.
245    10
$a Prediction of neonatal respiratory morbidity by quantitative ultrasound lung texture analysis: a multicenter study / $c M. Palacio, E. Bonet-Carne, T. Cobo, A. Perez-Moreno, J. Sabrià, J. Richter, M. Kacerovsky, B. Jacobsson, RA. García-Posada, F. Bugatto, R. Santisteve, À. Vives, M. Parra-Cordero, E. Hernandez-Andrade, JL. Bartha, P. Carretero-Lucena, KL. Tan, R. Cruz-Martínez, M. Burke, S. Vavilala, I. Iruretagoyena, JL. Delgado, M. Schenone, J. Vilanova, F. Botet, GSH. Yeo, J. Hyett, J. Deprest, R. Romero, E. Gratacos, . ,
520    9_
$a BACKGROUND: Prediction of neonatal respiratory morbidity may be useful to plan delivery in complicated pregnancies. The limited predictive performance of the current diagnostic tests together with the risks of an invasive procedure restricts the use of fetal lung maturity assessment. OBJECTIVE: The objective of the study was to evaluate the performance of quantitative ultrasound texture analysis of the fetal lung (quantusFLM) to predict neonatal respiratory morbidity in preterm and early-term (<39.0 weeks) deliveries. STUDY DESIGN: This was a prospective multicenter study conducted in 20 centers worldwide. Fetal lung ultrasound images were obtained at 25.0-38.6 weeks of gestation within 48 hours of delivery, stored in Digital Imaging and Communication in Medicine format, and analyzed with quantusFLM. Physicians were blinded to the analysis. At delivery, perinatal outcomes and the occurrence of neonatal respiratory morbidity, defined as either respiratory distress syndrome or transient tachypnea of the newborn, were registered. The performance of the ultrasound texture analysis test to predict neonatal respiratory morbidity was evaluated. RESULTS: A total of 883 images were collected, but 17.3% were discarded because of poor image quality or exclusion criteria, leaving 730 observations for the final analysis. The prevalence of neonatal respiratory morbidity was 13.8% (101 of 730). The quantusFLM predicted neonatal respiratory morbidity with a sensitivity, specificity, positive and negative predictive values of 74.3% (75 of 101), 88.6% (557 of 629), 51.0% (75 of 147), and 95.5% (557 of 583), respectively. Accuracy was 86.5% (632 of 730) and positive and negative likelihood ratios were 6.5 and 0.3, respectively. CONCLUSION: The quantusFLM predicted neonatal respiratory morbidity with an accuracy similar to that previously reported for other tests with the advantage of being a noninvasive technique.
650    _2
$a dospělí $7 D000328
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a novorozenec $7 D007231
650    _2
$a plíce $x diagnostické zobrazování $x embryologie $x patologie $7 D008168
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a morbidita $7 D009017
650    _2
$a prediktivní hodnota testů $7 D011237
650    _2
$a těhotenství $7 D011247
650    _2
$a prospektivní studie $7 D011446
650    _2
$a syndrom respirační tísně novorozenců $x epidemiologie $7 D012127
650    _2
$a tachypnoe $x epidemiologie $7 D059246
650    12
$a ultrasonografie prenatální $7 D016216
655    _2
$a časopisecké články $7 D016428
655    _2
$a multicentrická studie $7 D016448
700    1_
$a Bonet-Carne, Elisenda $u Transmural Biotech SL, Barcelona, Spain.
700    1_
$a Cobo, Teresa $u BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (Centro de Investigación Biomédica en Red Enfermedades Raras), Barcelona, Spain.
700    1_
$a Perez-Moreno, Alvaro $u Transmural Biotech SL, Barcelona, Spain.
700    1_
$a Sabrià, Joan $u BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain.
700    1_
$a Richter, Jute $u Department of Obstetrics and Gynaecology, University Hospitals Leuven, and Academic Department of Development and Regeneration, Organ System Cluster, KU Leuven, Leuven, Belgium.
700    1_
$a Kacerovsky, Marian $u Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, and Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic.
700    1_
$a Jacobsson, Bo $u Department of Obstetrics and Gynecology, Sahlgrenska University Hospital/Ostra, Gothenburg University, Gothenburg, Sweden; Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway.
700    1_
$a García-Posada, Raúl A $u Clínica del Prado. Medellín, Antioquía, Colombia.
700    1_
$a Bugatto, Fernando $u Division of Fetal-Maternal Medicine, Department of Obstetrics and Gynecology, University Hospital Puerta del Mar, Cadiz, Spain.
700    1_
$a Santisteve, Ramon $u Althaia Xarxa Assistencial Universitària de Manresa, Hospital de Sant Joan de Déu, Manresa, Spain.
700    1_
$a Vives, Àngels $u Department of Obstetrics and Gynaecology, Consorci Sanitari de Terrassa, Terrassa, Spain.
700    1_
$a Parra-Cordero, Mauro $u Maternal-Fetal Medicine Unit, Department of Obstetrics and Gynecology, University of Chile Hospital, Santiago de Chile, Chile.
700    1_
$a Hernandez-Andrade, Edgar $u Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Wayne State University Detroit, MI.
700    1_
$a Bartha, José Luis $u Division of Maternal and Fetal Medicine, University Hospital La Paz, Madrid, Spain.
700    1_
$a Carretero-Lucena, Pilar $u Maternal-Fetal Medicine Unit, Department of Obstetrics and Gynaecology, University Hospital of Granada (CHUG), Granada, Spain.
700    1_
$a Tan, Kai Lit $u Department of Maternal-Fetal Medicine, KK Women's and Children's Hospital, Singapore.
700    1_
$a Cruz-Martínez, Rogelio $u Fetal Medicine Research Unit, Children's and Women's Specialty Hospital of Queretaro, Unidad de Investigación en Neurodesarrollo, Instituto de Neurobiología, UNAM-Juriquilla, Queretaro, Mexico.
700    1_
$a Burke, Minke $u Royal Prince Alfred Hospital Sydney, University of Sydney, Sydney, New South Wales, Australia.
700    1_
$a Vavilala, Suseela $u Fernández Hospital, Hyberabad, India.
700    1_
$a Iruretagoyena, Igor $u Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynaecology, University of Wisconsin, Madison, WI.
700    1_
$a Delgado, Juan Luis $u Fetal Medicine Unit, Clinic University Hospital, Virgen de la Arrixaca, Murcia, Spain.
700    1_
$a Schenone, Mauro $u Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN.
700    1_
$a Vilanova, Josep $u Hospital Nostra Senyora de Meritxell, Escaldes-Engordany, Andorra.
700    1_
$a Botet, Francesc $u BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (Centro de Investigación Biomédica en Red Enfermedades Raras), Barcelona, Spain.
700    1_
$a Yeo, George S H $u Department of Maternal-Fetal Medicine, KK Women's and Children's Hospital, Singapore.
700    1_
$a Hyett, Jon $u Royal Prince Alfred Hospital Sydney, University of Sydney, Sydney, New South Wales, Australia.
700    1_
$a Deprest, Jan $u Department of Obstetrics and Gynaecology, University Hospitals Leuven, and Academic Department of Development and Regeneration, Organ System Cluster, KU Leuven, Leuven, Belgium.
700    1_
$a Romero, Roberto $u Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Center for Molecular Medicine and Genetics, Wayne State University Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI.
700    1_
$a Gratacos, Eduard $u BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (Centro de Investigación Biomédica en Red Enfermedades Raras), Barcelona, Spain.
700    1_
$a ,
773    0_
$w MED00000270 $t American journal of obstetrics and gynecology $x 1097-6868 $g Roč. 217, č. 2 (2017), s. 196.e1-196.e14
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28342715 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171030102825 $b ABA008
999    __
$a ok $b bmc $g 1254525 $s 991959
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 217 $c 2 $d 196.e1-196.e14 $e 20170323 $i 1097-6868 $m American journal of obstetrics and gynecology $n Am J Obstet Gynecol $x MED00000270
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...