-
Something wrong with this record ?
Characterization of three-dimensional cancer cell migration in mixed collagen-Matrigel scaffolds using microfluidics and image analysis
M. Anguiano, C. Castilla, M. Maška, C. Ederra, R. Peláez, X. Morales, G. Muñoz-Arrieta, M. Mujika, M. Kozubek, A. Muñoz-Barrutia, A. Rouzaut, S. Arana, JM. Garcia-Aznar, C. Ortiz-de-Solorzano,
Language English Country United States
Document type Journal Article
NLK
Directory of Open Access Journals
from 2006
Free Medical Journals
from 2006
Public Library of Science (PLoS)
from 2006
PubMed Central
from 2006
Europe PubMed Central
from 2006
ProQuest Central
from 2006-12-01
Open Access Digital Library
from 2006-01-01
Open Access Digital Library
from 2006-10-01
Open Access Digital Library
from 2006-01-01
Medline Complete (EBSCOhost)
from 2008-01-01
Nursing & Allied Health Database (ProQuest)
from 2006-12-01
Health & Medicine (ProQuest)
from 2006-12-01
Public Health Database (ProQuest)
from 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
from 2006
- MeSH
- Spheroids, Cellular MeSH
- Diffusion MeSH
- Extracellular Matrix MeSH
- Phenotype MeSH
- Drug Combinations MeSH
- Hydrogels MeSH
- Collagen * chemistry ultrastructure MeSH
- Microscopy, Confocal MeSH
- Laminin * chemistry ultrastructure MeSH
- Humans MeSH
- Mechanical Phenomena MeSH
- Neoplasm Metastasis MeSH
- Microfluidics * methods MeSH
- Cell Line, Tumor MeSH
- Tumor Cells, Cultured MeSH
- Tumor Microenvironment MeSH
- Cell Movement * MeSH
- Proteoglycans * chemistry ultrastructure MeSH
- Tissue Scaffolds * chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17031066
- 003
- CZ-PrNML
- 005
- 20171025122837.0
- 007
- ta
- 008
- 171025s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0171417 $2 doi
- 035 __
- $a (PubMed)28166248
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Anguiano, María $u Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain. $7 gn_A_00007006
- 245 10
- $a Characterization of three-dimensional cancer cell migration in mixed collagen-Matrigel scaffolds using microfluidics and image analysis / $c M. Anguiano, C. Castilla, M. Maška, C. Ederra, R. Peláez, X. Morales, G. Muñoz-Arrieta, M. Mujika, M. Kozubek, A. Muñoz-Barrutia, A. Rouzaut, S. Arana, JM. Garcia-Aznar, C. Ortiz-de-Solorzano,
- 520 9_
- $a Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs.
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 12
- $a pohyb buněk $7 D002465
- 650 12
- $a kolagen $x chemie $x ultrastruktura $7 D003094
- 650 _2
- $a difuze $7 D004058
- 650 _2
- $a fixní kombinace léků $7 D004338
- 650 _2
- $a extracelulární matrix $7 D005109
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a hydrogely $7 D020100
- 650 12
- $a laminin $x chemie $x ultrastruktura $7 D007797
- 650 _2
- $a mechanické jevy $7 D055595
- 650 12
- $a mikrofluidika $x metody $7 D044085
- 650 _2
- $a konfokální mikroskopie $7 D018613
- 650 _2
- $a metastázy nádorů $7 D009362
- 650 _2
- $a fenotyp $7 D010641
- 650 12
- $a proteoglykany $x chemie $x ultrastruktura $7 D011509
- 650 _2
- $a buněčné sféroidy $7 D018874
- 650 12
- $a tkáňové podpůrné struktury $x chemie $7 D054457
- 650 _2
- $a nádorové buňky kultivované $7 D014407
- 650 _2
- $a nádorové mikroprostředí $7 D059016
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Castilla, Carlos $u Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain.
- 700 1_
- $a Maška, Martin $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Ederra, Cristina $u Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain.
- 700 1_
- $a Peláez, Rafael $u Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain.
- 700 1_
- $a Morales, Xabier $u Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain.
- 700 1_
- $a Muñoz-Arrieta, Gorka $u Biodevices and MEMS group, Water and Health Division, CEIT and TECNUN University of Navarra, Donostia - San Sebastián, Gipuzkoa, SPAIN.
- 700 1_
- $a Mujika, Maite $u Biodevices and MEMS group, Water and Health Division, CEIT and TECNUN University of Navarra, Donostia - San Sebastián, Gipuzkoa, SPAIN.
- 700 1_
- $a Kozubek, Michal $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Muñoz-Barrutia, Arrate $u Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, Leganes, Madrid. Biomedical Engineering Division, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
- 700 1_
- $a Rouzaut, Ana $u Department of Biochemistry and Genetics, Faculty of Sciences, University of Navarra, Pamplona, Navarra, Spain. Department of Immunology and Inmunotherapy, CIMA, Pamplona, Navarra, Spain.
- 700 1_
- $a Arana, Sergio $u Biodevices and MEMS group, Water and Health Division, CEIT and TECNUN University of Navarra, Donostia - San Sebastián, Gipuzkoa, SPAIN. $7 gn_A_00007972
- 700 1_
- $a Garcia-Aznar, José Manuel $u Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
- 700 1_
- $a Ortiz-de-Solorzano, Carlos $u Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain.
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 12, č. 2 (2017), s. e0171417
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28166248 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171025122919 $b ABA008
- 999 __
- $a ok $b bmc $g 1254659 $s 992093
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 12 $c 2 $d e0171417 $e 20170206 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20171025