Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Characterization of three-dimensional cancer cell migration in mixed collagen-Matrigel scaffolds using microfluidics and image analysis

M. Anguiano, C. Castilla, M. Maška, C. Ederra, R. Peláez, X. Morales, G. Muñoz-Arrieta, M. Mujika, M. Kozubek, A. Muñoz-Barrutia, A. Rouzaut, S. Arana, JM. Garcia-Aznar, C. Ortiz-de-Solorzano,

. 2017 ; 12 (2) : e0171417. [pub] 20170206

Language English Country United States

Document type Journal Article

Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17031066
003      
CZ-PrNML
005      
20171025122837.0
007      
ta
008      
171025s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0171417 $2 doi
035    __
$a (PubMed)28166248
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Anguiano, María $u Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain. $7 gn_A_00007006
245    10
$a Characterization of three-dimensional cancer cell migration in mixed collagen-Matrigel scaffolds using microfluidics and image analysis / $c M. Anguiano, C. Castilla, M. Maška, C. Ederra, R. Peláez, X. Morales, G. Muñoz-Arrieta, M. Mujika, M. Kozubek, A. Muñoz-Barrutia, A. Rouzaut, S. Arana, JM. Garcia-Aznar, C. Ortiz-de-Solorzano,
520    9_
$a Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs.
650    _2
$a nádorové buněčné linie $7 D045744
650    12
$a pohyb buněk $7 D002465
650    12
$a kolagen $x chemie $x ultrastruktura $7 D003094
650    _2
$a difuze $7 D004058
650    _2
$a fixní kombinace léků $7 D004338
650    _2
$a extracelulární matrix $7 D005109
650    _2
$a lidé $7 D006801
650    _2
$a hydrogely $7 D020100
650    12
$a laminin $x chemie $x ultrastruktura $7 D007797
650    _2
$a mechanické jevy $7 D055595
650    12
$a mikrofluidika $x metody $7 D044085
650    _2
$a konfokální mikroskopie $7 D018613
650    _2
$a metastázy nádorů $7 D009362
650    _2
$a fenotyp $7 D010641
650    12
$a proteoglykany $x chemie $x ultrastruktura $7 D011509
650    _2
$a buněčné sféroidy $7 D018874
650    12
$a tkáňové podpůrné struktury $x chemie $7 D054457
650    _2
$a nádorové buňky kultivované $7 D014407
650    _2
$a nádorové mikroprostředí $7 D059016
655    _2
$a časopisecké články $7 D016428
700    1_
$a Castilla, Carlos $u Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain.
700    1_
$a Maška, Martin $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic.
700    1_
$a Ederra, Cristina $u Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain.
700    1_
$a Peláez, Rafael $u Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain.
700    1_
$a Morales, Xabier $u Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain.
700    1_
$a Muñoz-Arrieta, Gorka $u Biodevices and MEMS group, Water and Health Division, CEIT and TECNUN University of Navarra, Donostia - San Sebastián, Gipuzkoa, SPAIN.
700    1_
$a Mujika, Maite $u Biodevices and MEMS group, Water and Health Division, CEIT and TECNUN University of Navarra, Donostia - San Sebastián, Gipuzkoa, SPAIN.
700    1_
$a Kozubek, Michal $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic.
700    1_
$a Muñoz-Barrutia, Arrate $u Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, Leganes, Madrid. Biomedical Engineering Division, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
700    1_
$a Rouzaut, Ana $u Department of Biochemistry and Genetics, Faculty of Sciences, University of Navarra, Pamplona, Navarra, Spain. Department of Immunology and Inmunotherapy, CIMA, Pamplona, Navarra, Spain.
700    1_
$a Arana, Sergio $u Biodevices and MEMS group, Water and Health Division, CEIT and TECNUN University of Navarra, Donostia - San Sebastián, Gipuzkoa, SPAIN. $7 gn_A_00007972
700    1_
$a Garcia-Aznar, José Manuel $u Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
700    1_
$a Ortiz-de-Solorzano, Carlos $u Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 12, č. 2 (2017), s. e0171417
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28166248 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171025122919 $b ABA008
999    __
$a ok $b bmc $g 1254659 $s 992093
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 12 $c 2 $d e0171417 $e 20170206 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20171025

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...