-
Je něco špatně v tomto záznamu ?
Ubiquitylation-dependent oligomerization regulates activity of Nedd4 ligases
I. Attali, WS. Tobelaim, A. Persaud, K. Motamedchaboki, KJ. Simpson-Lavy, B. Mashahreh, O. Levin-Kravets, T. Keren-Kaplan, I. Pilzer, M. Kupiec, R. Wiener, DA. Wolf, D. Rotin, G. Prag,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
NLK
BioMedCentral Open Access
od 2012
PubMed Central
od 2010 do Před 1 rokem
ProQuest Central
od 2010-03-01 do 2018-12-31
Open Access Digital Library
od 2010-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2010-03-01 do 2018-12-31
ROAD: Directory of Open Access Scholarly Resources
od 2010
PubMed
28069708
DOI
10.15252/embj.201694314
Knihovny.cz E-zdroje
- MeSH
- draslíkové kanály řízené napětím chemie metabolismus MeSH
- endozomální třídící komplexy pro transport metabolismus MeSH
- lidé MeSH
- mikrofilamentové proteiny chemie metabolismus MeSH
- multimerizace proteinu * MeSH
- proteasomový endopeptidasový komplex chemie metabolismus MeSH
- receptor fibroblastových růstových faktorů, typ 1 chemie metabolismus MeSH
- Saccharomyces cerevisiae - proteiny chemie metabolismus MeSH
- ubikvitinace * MeSH
- ubikvitinligasy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Ubiquitylation controls protein function and degradation. Therefore, ubiquitin ligases need to be tightly controlled. We discovered an evolutionarily conserved allosteric restraint mechanism for Nedd4 ligases and demonstrated its function with diverse substrates: the yeast soluble proteins Rpn10 and Rvs167, and the human receptor tyrosine kinase FGFR1 and cardiac IKS potassium channel. We found that a potential trimerization interface is structurally blocked by the HECT domain α1-helix, which further undergoes ubiquitylation on a conserved lysine residue. Genetic, bioinformatics, biochemical and biophysical data show that attraction between this α1-conjugated ubiquitin and the HECT ubiquitin-binding patch pulls the α1-helix out of the interface, thereby promoting trimerization. Strikingly, trimerization renders the ligase inactive. Arginine substitution of the ubiquitylated lysine impairs this inactivation mechanism and results in unrestrained FGFR1 ubiquitylation in cells. Similarly, electrophysiological data and TIRF microscopy show that NEDD4 unrestrained mutant constitutively downregulates the IKS channel, thus confirming the functional importance of E3-ligase autoinhibition.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17031146
- 003
- CZ-PrNML
- 005
- 20171025115429.0
- 007
- ta
- 008
- 171025s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.15252/embj.201694314 $2 doi
- 035 __
- $a (PubMed)28069708
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Attali, Ilan $u Department of Biochemistry and Molecular Biology, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. $7 gn_A_00009845
- 245 10
- $a Ubiquitylation-dependent oligomerization regulates activity of Nedd4 ligases / $c I. Attali, WS. Tobelaim, A. Persaud, K. Motamedchaboki, KJ. Simpson-Lavy, B. Mashahreh, O. Levin-Kravets, T. Keren-Kaplan, I. Pilzer, M. Kupiec, R. Wiener, DA. Wolf, D. Rotin, G. Prag,
- 520 9_
- $a Ubiquitylation controls protein function and degradation. Therefore, ubiquitin ligases need to be tightly controlled. We discovered an evolutionarily conserved allosteric restraint mechanism for Nedd4 ligases and demonstrated its function with diverse substrates: the yeast soluble proteins Rpn10 and Rvs167, and the human receptor tyrosine kinase FGFR1 and cardiac IKS potassium channel. We found that a potential trimerization interface is structurally blocked by the HECT domain α1-helix, which further undergoes ubiquitylation on a conserved lysine residue. Genetic, bioinformatics, biochemical and biophysical data show that attraction between this α1-conjugated ubiquitin and the HECT ubiquitin-binding patch pulls the α1-helix out of the interface, thereby promoting trimerization. Strikingly, trimerization renders the ligase inactive. Arginine substitution of the ubiquitylated lysine impairs this inactivation mechanism and results in unrestrained FGFR1 ubiquitylation in cells. Similarly, electrophysiological data and TIRF microscopy show that NEDD4 unrestrained mutant constitutively downregulates the IKS channel, thus confirming the functional importance of E3-ligase autoinhibition.
- 650 _2
- $a endozomální třídící komplexy pro transport $x metabolismus $7 D056827
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mikrofilamentové proteiny $x chemie $x metabolismus $7 D008840
- 650 _2
- $a draslíkové kanály řízené napětím $x chemie $x metabolismus $7 D024642
- 650 _2
- $a proteasomový endopeptidasový komplex $x chemie $x metabolismus $7 D046988
- 650 12
- $a multimerizace proteinu $7 D055503
- 650 _2
- $a receptor fibroblastových růstových faktorů, typ 1 $x chemie $x metabolismus $7 D051496
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x chemie $x metabolismus $7 D029701
- 650 _2
- $a ubikvitinligasy $x metabolismus $7 D044767
- 650 12
- $a ubikvitinace $7 D054875
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Tobelaim, William Sam $u Department of Physiology & Pharmacology, Sackler Tel Aviv University, Tel Aviv, Israel.
- 700 1_
- $a Persaud, Avinash $u Cell Biology Program, The Hospital for Sick Children and Biochemistry Department, University of Toronto, Toronto, ON, Canada.
- 700 1_
- $a Motamedchaboki, Khatereh $u Tumor Initiation & Maintenance Program and NCI Cancer Centre Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
- 700 1_
- $a Simpson-Lavy, Kobi J $u Department of Molecular Microbiology and Biotechnology, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- 700 1_
- $a Mashahreh, Bayan $u Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
- 700 1_
- $a Levin-Kravets, Olga $u Department of Biochemistry and Molecular Biology, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- 700 1_
- $a Keren-Kaplan, Tal $u Department of Biochemistry and Molecular Biology, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- 700 1_
- $a Pilzer, Inbar $u Department of Biochemistry and Molecular Biology, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- 700 1_
- $a Kupiec, Martin $u Department of Molecular Microbiology and Biotechnology, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- 700 1_
- $a Wiener, Reuven $u Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
- 700 1_
- $a Wolf, Dieter A $u Tumor Initiation & Maintenance Program and NCI Cancer Centre Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA. School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
- 700 1_
- $a Rotin, Daniela $u Cell Biology Program, The Hospital for Sick Children and Biochemistry Department, University of Toronto, Toronto, ON, Canada.
- 700 1_
- $a Prag, Gali $u Department of Biochemistry and Molecular Biology, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel prag@post.tau.ac.il. Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- 773 0_
- $w MED00181668 $t The EMBO journal $x 1460-2075 $g Roč. 36, č. 4 (2017), s. 425-440
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28069708 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171025115511 $b ABA008
- 999 __
- $a ok $b bmc $g 1254739 $s 992173
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 36 $c 4 $d 425-440 $e 20170109 $i 1460-2075 $m The EPMA journal $n EPMA J $x MED00181668
- LZP __
- $a Pubmed-20171025