• Je něco špatně v tomto záznamu ?

Influence of BII Backbone Substates on DNA Twist: A Unified View and Comparison of Simulation and Experiment for All 136 Distinct Tetranucleotide Sequences

M. Zgarbová, P. Jurečka, F. Lankaš, TE. Cheatham, J. Šponer, M. Otyepka,

. 2017 ; 57 (2) : 275-287. [pub] 20170120

Jazyk angličtina Země Spojené státy americké

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17031159

Reliable representation of the B-DNA base-pair step twist is one of the crucial requirements for theoretical modeling of DNA supercoiling and other biologically relevant phenomena in B-DNA. It has long been suspected that the twist is inaccurately described by current empirical force fields. Unfortunately, comparison of simulation results with experiments is not straightforward because of the presence of BII backbone substates, whose populations may differ in experimental and simulation ensembles. In this work, we provide a comprehensive view of the effect of BII substates on the overall B-DNA helix twist and show how to reliably compare twist values from experiment and simulation in two scenarios. First, for longer DNA segments freely moving in solution, we show that sequence-averaged twists of different BI/BII ensembles can be compared directly because of approximate cancellation of the opposing BII effects. Second, for sequence-specific data, such as a particular base-pair step or tetranucleotide twist, can be compared only for a clearly defined BI/BII backbone conformation. For the purpose of force field testing, we designed a compact set of fourteen 22-base-pair B-DNA duplexes (Set 14) containing all 136 distinct tetranucleotide sequences and carried out a total of 84 μs of molecular dynamics simulations, primarily with the OL15 force field. Our results show that the ff99bsc0εζOL1χOL4, parmbsc1, and OL15 force fields model the B-DNA helical twist in good agreement with X-ray and minicircle ligation experiments. The comprehensive understanding obtained regarding the effect of BII substates on the base-pair step geometry should aid meaningful comparisons of various conformational ensembles in future research.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17031159
003      
CZ-PrNML
005      
20171030132617.0
007      
ta
008      
171025s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acs.jcim.6b00621 $2 doi
035    __
$a (PubMed)28059516
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zgarbová, Marie $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17 listopadu 12, 77146 Olomouc, Czech Republic.
245    10
$a Influence of BII Backbone Substates on DNA Twist: A Unified View and Comparison of Simulation and Experiment for All 136 Distinct Tetranucleotide Sequences / $c M. Zgarbová, P. Jurečka, F. Lankaš, TE. Cheatham, J. Šponer, M. Otyepka,
520    9_
$a Reliable representation of the B-DNA base-pair step twist is one of the crucial requirements for theoretical modeling of DNA supercoiling and other biologically relevant phenomena in B-DNA. It has long been suspected that the twist is inaccurately described by current empirical force fields. Unfortunately, comparison of simulation results with experiments is not straightforward because of the presence of BII backbone substates, whose populations may differ in experimental and simulation ensembles. In this work, we provide a comprehensive view of the effect of BII substates on the overall B-DNA helix twist and show how to reliably compare twist values from experiment and simulation in two scenarios. First, for longer DNA segments freely moving in solution, we show that sequence-averaged twists of different BI/BII ensembles can be compared directly because of approximate cancellation of the opposing BII effects. Second, for sequence-specific data, such as a particular base-pair step or tetranucleotide twist, can be compared only for a clearly defined BI/BII backbone conformation. For the purpose of force field testing, we designed a compact set of fourteen 22-base-pair B-DNA duplexes (Set 14) containing all 136 distinct tetranucleotide sequences and carried out a total of 84 μs of molecular dynamics simulations, primarily with the OL15 force field. Our results show that the ff99bsc0εζOL1χOL4, parmbsc1, and OL15 force fields model the B-DNA helical twist in good agreement with X-ray and minicircle ligation experiments. The comprehensive understanding obtained regarding the effect of BII substates on the base-pair step geometry should aid meaningful comparisons of various conformational ensembles in future research.
650    _2
$a párování bází $7 D020029
650    _2
$a sekvence nukleotidů $7 D001483
650    _2
$a B-DNA $x chemie $x genetika $7 D059371
650    12
$a simulace molekulární dynamiky $7 D056004
650    _2
$a oligonukleotidy $x chemie $x genetika $7 D009841
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
700    1_
$a Jurečka, Petr $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17 listopadu 12, 77146 Olomouc, Czech Republic.
700    1_
$a Lankaš, Filip $u Laboratory of Informatics and Chemistry, University of Chemistry and Technology Prague , Technická 5, 16628 Prague, Czech Republic.
700    1_
$a Cheatham, Thomas E $u Department of Medicinal Chemistry, University of Utah , 30 South 2000 East, Skaggs 105, Salt Lake City, Utah 84112, United States.
700    1_
$a Šponer, Jiří $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17 listopadu 12, 77146 Olomouc, Czech Republic. Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 61265 Brno, Czech Republic.
700    1_
$a Otyepka, Michal $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17 listopadu 12, 77146 Olomouc, Czech Republic.
773    0_
$w MED00008945 $t Journal of chemical information and modeling $x 1549-960X $g Roč. 57, č. 2 (2017), s. 275-287
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28059516 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171030132706 $b ABA008
999    __
$a ok $b bmc $g 1254752 $s 992186
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 57 $c 2 $d 275-287 $e 20170120 $i 1549-960X $m Journal of chemical information and modeling $n J Chem Inf Model $x MED00008945
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...