-
Je něco špatně v tomto záznamu ?
Influence of BII Backbone Substates on DNA Twist: A Unified View and Comparison of Simulation and Experiment for All 136 Distinct Tetranucleotide Sequences
M. Zgarbová, P. Jurečka, F. Lankaš, TE. Cheatham, J. Šponer, M. Otyepka,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu srovnávací studie, časopisecké články
PubMed
28059516
DOI
10.1021/acs.jcim.6b00621
Knihovny.cz E-zdroje
- MeSH
- B-DNA chemie genetika MeSH
- oligonukleotidy chemie genetika MeSH
- párování bází MeSH
- sekvence nukleotidů MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Reliable representation of the B-DNA base-pair step twist is one of the crucial requirements for theoretical modeling of DNA supercoiling and other biologically relevant phenomena in B-DNA. It has long been suspected that the twist is inaccurately described by current empirical force fields. Unfortunately, comparison of simulation results with experiments is not straightforward because of the presence of BII backbone substates, whose populations may differ in experimental and simulation ensembles. In this work, we provide a comprehensive view of the effect of BII substates on the overall B-DNA helix twist and show how to reliably compare twist values from experiment and simulation in two scenarios. First, for longer DNA segments freely moving in solution, we show that sequence-averaged twists of different BI/BII ensembles can be compared directly because of approximate cancellation of the opposing BII effects. Second, for sequence-specific data, such as a particular base-pair step or tetranucleotide twist, can be compared only for a clearly defined BI/BII backbone conformation. For the purpose of force field testing, we designed a compact set of fourteen 22-base-pair B-DNA duplexes (Set 14) containing all 136 distinct tetranucleotide sequences and carried out a total of 84 μs of molecular dynamics simulations, primarily with the OL15 force field. Our results show that the ff99bsc0εζOL1χOL4, parmbsc1, and OL15 force fields model the B-DNA helical twist in good agreement with X-ray and minicircle ligation experiments. The comprehensive understanding obtained regarding the effect of BII substates on the base-pair step geometry should aid meaningful comparisons of various conformational ensembles in future research.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17031159
- 003
- CZ-PrNML
- 005
- 20171030132617.0
- 007
- ta
- 008
- 171025s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acs.jcim.6b00621 $2 doi
- 035 __
- $a (PubMed)28059516
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Zgarbová, Marie $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17 listopadu 12, 77146 Olomouc, Czech Republic.
- 245 10
- $a Influence of BII Backbone Substates on DNA Twist: A Unified View and Comparison of Simulation and Experiment for All 136 Distinct Tetranucleotide Sequences / $c M. Zgarbová, P. Jurečka, F. Lankaš, TE. Cheatham, J. Šponer, M. Otyepka,
- 520 9_
- $a Reliable representation of the B-DNA base-pair step twist is one of the crucial requirements for theoretical modeling of DNA supercoiling and other biologically relevant phenomena in B-DNA. It has long been suspected that the twist is inaccurately described by current empirical force fields. Unfortunately, comparison of simulation results with experiments is not straightforward because of the presence of BII backbone substates, whose populations may differ in experimental and simulation ensembles. In this work, we provide a comprehensive view of the effect of BII substates on the overall B-DNA helix twist and show how to reliably compare twist values from experiment and simulation in two scenarios. First, for longer DNA segments freely moving in solution, we show that sequence-averaged twists of different BI/BII ensembles can be compared directly because of approximate cancellation of the opposing BII effects. Second, for sequence-specific data, such as a particular base-pair step or tetranucleotide twist, can be compared only for a clearly defined BI/BII backbone conformation. For the purpose of force field testing, we designed a compact set of fourteen 22-base-pair B-DNA duplexes (Set 14) containing all 136 distinct tetranucleotide sequences and carried out a total of 84 μs of molecular dynamics simulations, primarily with the OL15 force field. Our results show that the ff99bsc0εζOL1χOL4, parmbsc1, and OL15 force fields model the B-DNA helical twist in good agreement with X-ray and minicircle ligation experiments. The comprehensive understanding obtained regarding the effect of BII substates on the base-pair step geometry should aid meaningful comparisons of various conformational ensembles in future research.
- 650 _2
- $a párování bází $7 D020029
- 650 _2
- $a sekvence nukleotidů $7 D001483
- 650 _2
- $a B-DNA $x chemie $x genetika $7 D059371
- 650 12
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a oligonukleotidy $x chemie $x genetika $7 D009841
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Jurečka, Petr $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17 listopadu 12, 77146 Olomouc, Czech Republic.
- 700 1_
- $a Lankaš, Filip $u Laboratory of Informatics and Chemistry, University of Chemistry and Technology Prague , Technická 5, 16628 Prague, Czech Republic.
- 700 1_
- $a Cheatham, Thomas E $u Department of Medicinal Chemistry, University of Utah , 30 South 2000 East, Skaggs 105, Salt Lake City, Utah 84112, United States.
- 700 1_
- $a Šponer, Jiří $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17 listopadu 12, 77146 Olomouc, Czech Republic. Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 61265 Brno, Czech Republic.
- 700 1_
- $a Otyepka, Michal $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17 listopadu 12, 77146 Olomouc, Czech Republic.
- 773 0_
- $w MED00008945 $t Journal of chemical information and modeling $x 1549-960X $g Roč. 57, č. 2 (2017), s. 275-287
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28059516 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171030132706 $b ABA008
- 999 __
- $a ok $b bmc $g 1254752 $s 992186
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 57 $c 2 $d 275-287 $e 20170120 $i 1549-960X $m Journal of chemical information and modeling $n J Chem Inf Model $x MED00008945
- LZP __
- $a Pubmed-20171025