-
Je něco špatně v tomto záznamu ?
Physical Compatibility of Propofol-Sufentanil Mixtures
J. Zbytovská, J. Gallusová, L. Vidlářová, K. Procházková, J. Šimek, F. Štěpánek,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
- MeSH
- anestetika intravenózní aplikace a dávkování chemie MeSH
- chemické jevy * MeSH
- fixní kombinace léků MeSH
- intravenózní infuze MeSH
- lidé MeSH
- propofol aplikace a dávkování chemie MeSH
- stabilita léku MeSH
- sufentanil aplikace a dávkování chemie MeSH
- velikost částic MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Combined infusions of propofol and sufentanil preparations are frequently used in clinical practice to induce anesthesia and analgesia. However, the stability of propofol emulsions can be affected by dilution with another preparation, sometimes leading to particle coalescence and enlargement. Such unwanted effects can lead to fat embolism syndrome after intravenous application. This study describes the physical stability of 5 commercially available propofol preparations mixed with sufentanil citrate solutions. METHODS: Two common markers of emulsion stability were used in this study; namely, the zeta potential and size distribution of the emulsion droplets. Both were measured using dynamic light scattering. The data for the pure propofol preparations and their mixtures with sufentanil citrate solution were compared. RESULTS: The absolute value of zeta potential decreased in 4 of the 5 propofol preparations after they had been mixed with sufentanil citrate. This effect indicates a lowering of repulsive interactions between the emulsion droplets. Although this phenomenon tends to cause agglomeration, none of the studied mixtures displayed a substantial increase in droplet size within 24 hours of blending. However, our long-term stability study revealed the instability of some of the propofol-sufentanil samples. Two of the 5 studied mixtures displayed a continual increase in particle size. The same 2 preparations showed the greatest reductions in the absolute value of zeta potential, thereby confirming the correlation of both measurement methods. The increase in particle size was more distinct in the samples stored at higher temperatures and with higher sufentanil concentrations. CONCLUSIONS: To ensure the microbial stability of an emulsion infusion preparation, clinical regulations require that such preparations should be applied to patients within 12 hours of opening. In this respect, we can confirm that during this period, none of the studied propofol-sufentanil mixtures displayed any physical instability that could lead to particle enlargement; thus, fat embolism should not be a risk after their intravenous application. However, our long-term stability study revealed differences between commercially available preparations containing the same active ingredient; some of the mixtures showed an increase in particle size and polydispersity over a longer period. Although our results should not be generalized beyond the particular propofol-sufentanil preparations and concentrations studied here, they do suggest that, as a general principle, a compatibility study should be performed for any preparation before the first intravenous application to exclude the risk of droplet aggregation.
†Department of Clinical Pharmacy Na Homolce Hospital Prague Czech Republic
‡Department of Chemical Engineering University of Chemistry and Technology Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17031216
- 003
- CZ-PrNML
- 005
- 20250312121344.0
- 007
- ta
- 008
- 171025s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1213/ANE.0000000000001720 $2 doi
- 035 __
- $a (PubMed)27984227
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Zbytovská, Jarmila $u From the *Department of Organic Technology, University of Chemistry and Technology, Prague, Czech Republic; †Department of Clinical Pharmacy, Na Homolce Hospital, Prague, Czech Republic; and ‡Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic.
- 245 10
- $a Physical Compatibility of Propofol-Sufentanil Mixtures / $c J. Zbytovská, J. Gallusová, L. Vidlářová, K. Procházková, J. Šimek, F. Štěpánek,
- 520 9_
- $a BACKGROUND: Combined infusions of propofol and sufentanil preparations are frequently used in clinical practice to induce anesthesia and analgesia. However, the stability of propofol emulsions can be affected by dilution with another preparation, sometimes leading to particle coalescence and enlargement. Such unwanted effects can lead to fat embolism syndrome after intravenous application. This study describes the physical stability of 5 commercially available propofol preparations mixed with sufentanil citrate solutions. METHODS: Two common markers of emulsion stability were used in this study; namely, the zeta potential and size distribution of the emulsion droplets. Both were measured using dynamic light scattering. The data for the pure propofol preparations and their mixtures with sufentanil citrate solution were compared. RESULTS: The absolute value of zeta potential decreased in 4 of the 5 propofol preparations after they had been mixed with sufentanil citrate. This effect indicates a lowering of repulsive interactions between the emulsion droplets. Although this phenomenon tends to cause agglomeration, none of the studied mixtures displayed a substantial increase in droplet size within 24 hours of blending. However, our long-term stability study revealed the instability of some of the propofol-sufentanil samples. Two of the 5 studied mixtures displayed a continual increase in particle size. The same 2 preparations showed the greatest reductions in the absolute value of zeta potential, thereby confirming the correlation of both measurement methods. The increase in particle size was more distinct in the samples stored at higher temperatures and with higher sufentanil concentrations. CONCLUSIONS: To ensure the microbial stability of an emulsion infusion preparation, clinical regulations require that such preparations should be applied to patients within 12 hours of opening. In this respect, we can confirm that during this period, none of the studied propofol-sufentanil mixtures displayed any physical instability that could lead to particle enlargement; thus, fat embolism should not be a risk after their intravenous application. However, our long-term stability study revealed differences between commercially available preparations containing the same active ingredient; some of the mixtures showed an increase in particle size and polydispersity over a longer period. Although our results should not be generalized beyond the particular propofol-sufentanil preparations and concentrations studied here, they do suggest that, as a general principle, a compatibility study should be performed for any preparation before the first intravenous application to exclude the risk of droplet aggregation.
- 650 _2
- $a anestetika intravenózní $x aplikace a dávkování $x chemie $7 D018686
- 650 12
- $a chemické jevy $7 D055598
- 650 _2
- $a fixní kombinace léků $7 D004338
- 650 _2
- $a stabilita léku $7 D004355
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a intravenózní infuze $7 D007262
- 650 _2
- $a velikost částic $7 D010316
- 650 _2
- $a propofol $x aplikace a dávkování $x chemie $7 D015742
- 650 _2
- $a sufentanil $x aplikace a dávkování $x chemie $7 D017409
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Gallusová, Jana $7 xx0329848
- 700 1_
- $a Vidlářová, Lucie
- 700 1_
- $a Procházková, Kamila
- 700 1_
- $a Šimek, Jan
- 700 1_
- $a Štěpánek, František
- 773 0_
- $w MED00000348 $t Anesthesia and analgesia $x 1526-7598 $g Roč. 124, č. 3 (2017), s. 776-781
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27984227 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20250312121351 $b ABA008
- 999 __
- $a ok $b bmc $g 1254809 $s 992243
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 124 $c 3 $d 776-781 $i 1526-7598 $m Anesthesia and analgesia $n Anesth Analg $x MED00000348
- LZP __
- $a Pubmed-20171025