-
Je něco špatně v tomto záznamu ?
Medical Image Retrieval Using Vector Quantization and Fuzzy S-tree
J. Nowaková, M. Prílepok, V. Snášel,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
ProQuest Central
od 1997-02-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2000-02-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest)
od 1997-02-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-02-01 do Před 1 rokem
Health Management Database (ProQuest)
od 1997-02-01 do Před 1 rokem
- MeSH
- algoritmy MeSH
- fuzzy logika * MeSH
- komprese dat MeSH
- lidé MeSH
- mamografie metody MeSH
- rozpoznávání automatizované metody MeSH
- systémy pro podporu klinického rozhodování organizace a řízení MeSH
- ukládání a vyhledávání informací metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The aim of the article is to present a novel method for fuzzy medical image retrieval (FMIR) using vector quantization (VQ) with fuzzy signatures in conjunction with fuzzy S-trees. In past times, a task of similar pictures searching was not based on searching for similar content (e.g. shapes, colour) of the pictures but on the picture name. There exist some methods for the same purpose, but there is still some space for development of more efficient methods. The proposed image retrieval system is used for finding similar images, in our case in the medical area - in mammography, in addition to the creation of the list of similar images - cases. The created list is used for assessing the nature of the finding - whether the medical finding is malignant or benign. The suggested method is compared to the method using Normalized Compression Distance (NCD) instead of fuzzy signatures and fuzzy S-tree. The method with NCD is useful for the creation of the list of similar cases for malignancy assessment, but it is not able to capture the area of interest in the image. The proposed method is going to be added to the complex decision support system to help to determine appropriate healthcare according to the experiences of similar, previous cases.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17031217
- 003
- CZ-PrNML
- 005
- 20171101104733.0
- 007
- ta
- 008
- 171025s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s10916-016-0659-2 $2 doi
- 035 __
- $a (PubMed)27981409
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Nowaková, Jana $u Faculty of Electrical Engineering and Computer Science, Department of Computer Science, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, 708 33, Ostrava - Poruba, Czech Republic.
- 245 10
- $a Medical Image Retrieval Using Vector Quantization and Fuzzy S-tree / $c J. Nowaková, M. Prílepok, V. Snášel,
- 520 9_
- $a The aim of the article is to present a novel method for fuzzy medical image retrieval (FMIR) using vector quantization (VQ) with fuzzy signatures in conjunction with fuzzy S-trees. In past times, a task of similar pictures searching was not based on searching for similar content (e.g. shapes, colour) of the pictures but on the picture name. There exist some methods for the same purpose, but there is still some space for development of more efficient methods. The proposed image retrieval system is used for finding similar images, in our case in the medical area - in mammography, in addition to the creation of the list of similar images - cases. The created list is used for assessing the nature of the finding - whether the medical finding is malignant or benign. The suggested method is compared to the method using Normalized Compression Distance (NCD) instead of fuzzy signatures and fuzzy S-tree. The method with NCD is useful for the creation of the list of similar cases for malignancy assessment, but it is not able to capture the area of interest in the image. The proposed method is going to be added to the complex decision support system to help to determine appropriate healthcare according to the experiences of similar, previous cases.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a komprese dat $7 D044962
- 650 _2
- $a systémy pro podporu klinického rozhodování $x organizace a řízení $7 D020000
- 650 12
- $a fuzzy logika $7 D017143
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a ukládání a vyhledávání informací $x metody $7 D016247
- 650 _2
- $a mamografie $x metody $7 D008327
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Prílepok, Michal $u Faculty of Electrical Engineering and Computer Science, Department of Computer Science, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, 708 33, Ostrava - Poruba, Czech Republic.
- 700 1_
- $a Snášel, Václav $u Faculty of Electrical Engineering and Computer Science, Department of Computer Science, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, 708 33, Ostrava - Poruba, Czech Republic. vaclav.snasel@vsb.cz.
- 773 0_
- $w MED00007730 $t Journal of medical systems $x 1573-689X $g Roč. 41, č. 2 (2017), s. 18
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27981409 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171101104824 $b ABA008
- 999 __
- $a ok $b bmc $g 1254810 $s 992244
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 41 $c 2 $d 18 $e 20161215 $i 1573-689X $m Journal of medical systems $n J Med Syst $x MED00007730
- LZP __
- $a Pubmed-20171025