• Je něco špatně v tomto záznamu ?

Identification and characterization of multiple emissive species in aggregated minor antenna complexes

M. Wahadoszamen, E. Belgio, MA. Rahman, AM. Ara, AV. Ruban, R. van Grondelle,

. 2016 ; 1857 (12) : 1917-1924. [pub] 20160923

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc17031360

Aggregation induced conformational change of light harvesting antenna complexes is believed to constitute one of the pathways through which photosynthetic organisms can safely dissipate the surplus of energy while exposed to saturating light. In this study, Stark fluorescence (SF) spectroscopy is applied to minor antenna complexes (CP24, CP26 and CP29) both in their light-harvesting and energy-dissipating states to trace and characterize different species generated upon energy dissipation through aggregation (in-vitro) induced conformational change. SF spectroscopy could identify three spectral species in the dissipative state of CP24, two in CP26 and only one in CP29. The comprehensive analysis of the SF spectra yielded different sets of molecular parameters for the multiple spectral species identified in CP24 or CP26, indicating the involvement of different pigments in their formation. Interestingly, a species giving emission around the 730nm spectral region is found to form in both CP24 and CP26 following transition to the energy dissipative state, but not in CP29. The SF analyses revealed that the far red species has exceptionally large charge transfer (CT) character in the excited state. Moreover, the far red species was found to be formed invariably in both Zeaxanthin (Z)- and Violaxathin (V)-enriched CP24 and CP26 antennas with identical CT character but with larger emission yield in Z-enriched ones. This suggests that the carotenoid Z is not directly involved but only confers an allosteric effect on the formation of the far red species. Similar far red species with remarkably large CT character were also observed in the dissipative state of the major light harvesting antenna (LHCII) of plants [Wahadoszamen et al. PCCP, 2012], the fucoxanthin-chlorophyll protein (FCP) of brown algae [Wahadoszamen et al. BBA, 2014] and cyanobacterial IsiA [Wahadoszamen et al. BBA, 2015], thus pointing to identical sites and pigments active in the formation of the far red quenching species in different organisms.

000      
00000naa a2200000 a 4500
001      
bmc17031360
003      
CZ-PrNML
005      
20171025123911.0
007      
ta
008      
171025s2016 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bbabio.2016.09.010 $2 doi
035    __
$a (PubMed)27666345
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Wahadoszamen, Md $u Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands; Department of Physics, University of Dhaka, Dhaka 1000, Bangladesh. Electronic address: wahado.phy@du.ac.bd.
245    10
$a Identification and characterization of multiple emissive species in aggregated minor antenna complexes / $c M. Wahadoszamen, E. Belgio, MA. Rahman, AM. Ara, AV. Ruban, R. van Grondelle,
520    9_
$a Aggregation induced conformational change of light harvesting antenna complexes is believed to constitute one of the pathways through which photosynthetic organisms can safely dissipate the surplus of energy while exposed to saturating light. In this study, Stark fluorescence (SF) spectroscopy is applied to minor antenna complexes (CP24, CP26 and CP29) both in their light-harvesting and energy-dissipating states to trace and characterize different species generated upon energy dissipation through aggregation (in-vitro) induced conformational change. SF spectroscopy could identify three spectral species in the dissipative state of CP24, two in CP26 and only one in CP29. The comprehensive analysis of the SF spectra yielded different sets of molecular parameters for the multiple spectral species identified in CP24 or CP26, indicating the involvement of different pigments in their formation. Interestingly, a species giving emission around the 730nm spectral region is found to form in both CP24 and CP26 following transition to the energy dissipative state, but not in CP29. The SF analyses revealed that the far red species has exceptionally large charge transfer (CT) character in the excited state. Moreover, the far red species was found to be formed invariably in both Zeaxanthin (Z)- and Violaxathin (V)-enriched CP24 and CP26 antennas with identical CT character but with larger emission yield in Z-enriched ones. This suggests that the carotenoid Z is not directly involved but only confers an allosteric effect on the formation of the far red species. Similar far red species with remarkably large CT character were also observed in the dissipative state of the major light harvesting antenna (LHCII) of plants [Wahadoszamen et al. PCCP, 2012], the fucoxanthin-chlorophyll protein (FCP) of brown algae [Wahadoszamen et al. BBA, 2014] and cyanobacterial IsiA [Wahadoszamen et al. BBA, 2015], thus pointing to identical sites and pigments active in the formation of the far red quenching species in different organisms.
650    _2
$a chlorofyl $x metabolismus $x účinky záření $7 D002734
650    _2
$a přenos energie $7 D004735
650    _2
$a světlo $7 D008027
650    _2
$a světlosběrné proteinové komplexy $x chemie $x metabolismus $x účinky záření $7 D045342
650    12
$a fotosyntéza $x účinky záření $7 D010788
650    _2
$a konformace proteinů $7 D011487
650    _2
$a druhová specificita $7 D013045
650    _2
$a fluorescenční spektrometrie $7 D013050
650    _2
$a Spinacia oleracea $x chemie $x metabolismus $x účinky záření $7 D018724
650    _2
$a vztahy mezi strukturou a aktivitou $7 D013329
650    _2
$a xanthofyly $x metabolismus $7 D024341
650    _2
$a zeaxanthiny $x metabolismus $7 D065146
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Belgio, Erica $u Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic; School of Biological and Chemical Sciences, Department of Cell and Molecular Biology, Queen Mary University of London.
700    1_
$a Rahman, Md Ashiqur $u Department of Physics, Khulna University of Engineering and Technology (KUET), Khulna 9203, Bangladesh.
700    1_
$a Ara, Anjue Mane $u Department of Physics, Jagannath University, Dhaka 1100, Bangladesh. $7 gn_A_00007909
700    1_
$a Ruban, Alexander V $u School of Biological and Chemical Sciences, Department of Cell and Molecular Biology, Queen Mary University of London.
700    1_
$a van Grondelle, Rienk $u Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands. Electronic address: r.van.grondelle@vu.nl.
773    0_
$w MED00009314 $t Biochimica et biophysica acta $x 0006-3002 $g Roč. 1857, č. 12 (2016), s. 1917-1924
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27666345 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171025123953 $b ABA008
999    __
$a ok $b bmc $g 1254953 $s 992387
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 1857 $c 12 $d 1917-1924 $e 20160923 $i 0006-3002 $m Biochimica et biophysica acta $n Biochim Biophys Acta $x MED00009314
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...