-
Je něco špatně v tomto záznamu ?
Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens
A. Pinnola, H. Staleva-Musto, S. Capaldi, M. Ballottari, R. Bassi, T. Polívka,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- biologické modely MeSH
- chlorofyl metabolismus MeSH
- fotosyntéza * genetika účinky záření MeSH
- geneticky modifikované rostliny genetika metabolismus účinky záření MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- mechy genetika metabolismus účinky záření MeSH
- přenos energie MeSH
- spektrální analýza MeSH
- světlosběrné proteinové komplexy genetika metabolismus účinky záření MeSH
- tabák genetika metabolismus účinky záření MeSH
- transport elektronů MeSH
- vazba proteinů MeSH
- xanthofyly metabolismus MeSH
- zeaxanthiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Plants harvest photons for photosynthesis using light-harvesting complexes (LHCs)-an array of chlorophyll proteins that can reversibly switch from harvesting to energy-dissipation mode to prevent over-excitation and damage of the photosynthetic apparatus. In unicellular algae and lower plants this process requires the LHCSR proteins which senses over-acidification of the lumen trough protonatable residues exposed to the thylakoid lumen to activate quenching reactions. Further activation is provided by replacement of the violaxanthin ligand with its de-epoxidized product, zeaxanthin, also induced by excess light. We have produced the ppLHCSR1 protein from Physcomitrella patens by over-expression in tobacco and purified it in either its violaxanthin- or the zeaxanthin-binding form with the aim of analyzing their spectroscopic properties at either neutral or acidic pH. Using femtosecond spectroscopy, we demonstrated that the energy dissipation is achieved by two distinct quenching mechanism which are both activated by low pH. The first is present in both ppLHCSR1-Vio and ppLHCSR1-Zea and is characterized by 30-40ps time constant. The spectrum of the quenching product is reminiscent of a carotenoid radical cation, suggesting that the pH-induced quenching mechanism is likely electron transfer from the carotenoid to the excited Chl a. In addition, a second quenching channel populating the S1 state of carotenoid via energy transfer from Chl is found exclusively in the ppLHCSR1-Zea at pH5. These results provide proof of principle that more than one quenching mechanism may operate in the LHC superfamily and also help understanding the photoprotective role of LHCSR proteins and the evolution of LHC antennae.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17031361
- 003
- CZ-PrNML
- 005
- 20171025123911.0
- 007
- ta
- 008
- 171025s2016 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbabio.2016.09.001 $2 doi
- 035 __
- $a (PubMed)27614061
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Pinnola, Alberta $u Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
- 245 10
- $a Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens / $c A. Pinnola, H. Staleva-Musto, S. Capaldi, M. Ballottari, R. Bassi, T. Polívka,
- 520 9_
- $a Plants harvest photons for photosynthesis using light-harvesting complexes (LHCs)-an array of chlorophyll proteins that can reversibly switch from harvesting to energy-dissipation mode to prevent over-excitation and damage of the photosynthetic apparatus. In unicellular algae and lower plants this process requires the LHCSR proteins which senses over-acidification of the lumen trough protonatable residues exposed to the thylakoid lumen to activate quenching reactions. Further activation is provided by replacement of the violaxanthin ligand with its de-epoxidized product, zeaxanthin, also induced by excess light. We have produced the ppLHCSR1 protein from Physcomitrella patens by over-expression in tobacco and purified it in either its violaxanthin- or the zeaxanthin-binding form with the aim of analyzing their spectroscopic properties at either neutral or acidic pH. Using femtosecond spectroscopy, we demonstrated that the energy dissipation is achieved by two distinct quenching mechanism which are both activated by low pH. The first is present in both ppLHCSR1-Vio and ppLHCSR1-Zea and is characterized by 30-40ps time constant. The spectrum of the quenching product is reminiscent of a carotenoid radical cation, suggesting that the pH-induced quenching mechanism is likely electron transfer from the carotenoid to the excited Chl a. In addition, a second quenching channel populating the S1 state of carotenoid via energy transfer from Chl is found exclusively in the ppLHCSR1-Zea at pH5. These results provide proof of principle that more than one quenching mechanism may operate in the LHC superfamily and also help understanding the photoprotective role of LHCSR proteins and the evolution of LHC antennae.
- 650 _2
- $a mechy $x genetika $x metabolismus $x účinky záření $7 D019068
- 650 _2
- $a chlorofyl $x metabolismus $7 D002734
- 650 _2
- $a transport elektronů $7 D004579
- 650 _2
- $a přenos energie $7 D004735
- 650 _2
- $a koncentrace vodíkových iontů $7 D006863
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a světlosběrné proteinové komplexy $x genetika $x metabolismus $x účinky záření $7 D045342
- 650 _2
- $a biologické modely $7 D008954
- 650 12
- $a fotosyntéza $x genetika $x účinky záření $7 D010788
- 650 _2
- $a geneticky modifikované rostliny $x genetika $x metabolismus $x účinky záření $7 D030821
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a spektrální analýza $7 D013057
- 650 _2
- $a tabák $x genetika $x metabolismus $x účinky záření $7 D014026
- 650 _2
- $a xanthofyly $x metabolismus $7 D024341
- 650 _2
- $a zeaxanthiny $x metabolismus $7 D065146
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Staleva-Musto, Hristina $u Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic.
- 700 1_
- $a Capaldi, Stefano $u Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
- 700 1_
- $a Ballottari, Matteo $u Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
- 700 1_
- $a Bassi, Roberto $u Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy. Electronic address: roberto.bassi@univr.it.
- 700 1_
- $a Polívka, Tomáš $u Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic. Electronic address: tpolivka@jcu.cz.
- 773 0_
- $w MED00009314 $t Biochimica et biophysica acta $x 0006-3002 $g Roč. 1857, č. 12 (2016), s. 1870-1878
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27614061 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171025123954 $b ABA008
- 999 __
- $a ok $b bmc $g 1254954 $s 992388
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 1857 $c 12 $d 1870-1878 $e 20160907 $i 0006-3002 $m Biochimica et biophysica acta $n Biochim Biophys Acta $x MED00009314
- LZP __
- $a Pubmed-20171025