• Je něco špatně v tomto záznamu ?

Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens

A. Pinnola, H. Staleva-Musto, S. Capaldi, M. Ballottari, R. Bassi, T. Polívka,

. 2016 ; 1857 (12) : 1870-1878. [pub] 20160907

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc17031361

Plants harvest photons for photosynthesis using light-harvesting complexes (LHCs)-an array of chlorophyll proteins that can reversibly switch from harvesting to energy-dissipation mode to prevent over-excitation and damage of the photosynthetic apparatus. In unicellular algae and lower plants this process requires the LHCSR proteins which senses over-acidification of the lumen trough protonatable residues exposed to the thylakoid lumen to activate quenching reactions. Further activation is provided by replacement of the violaxanthin ligand with its de-epoxidized product, zeaxanthin, also induced by excess light. We have produced the ppLHCSR1 protein from Physcomitrella patens by over-expression in tobacco and purified it in either its violaxanthin- or the zeaxanthin-binding form with the aim of analyzing their spectroscopic properties at either neutral or acidic pH. Using femtosecond spectroscopy, we demonstrated that the energy dissipation is achieved by two distinct quenching mechanism which are both activated by low pH. The first is present in both ppLHCSR1-Vio and ppLHCSR1-Zea and is characterized by 30-40ps time constant. The spectrum of the quenching product is reminiscent of a carotenoid radical cation, suggesting that the pH-induced quenching mechanism is likely electron transfer from the carotenoid to the excited Chl a. In addition, a second quenching channel populating the S1 state of carotenoid via energy transfer from Chl is found exclusively in the ppLHCSR1-Zea at pH5. These results provide proof of principle that more than one quenching mechanism may operate in the LHC superfamily and also help understanding the photoprotective role of LHCSR proteins and the evolution of LHC antennae.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17031361
003      
CZ-PrNML
005      
20171025123911.0
007      
ta
008      
171025s2016 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bbabio.2016.09.001 $2 doi
035    __
$a (PubMed)27614061
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Pinnola, Alberta $u Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
245    10
$a Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens / $c A. Pinnola, H. Staleva-Musto, S. Capaldi, M. Ballottari, R. Bassi, T. Polívka,
520    9_
$a Plants harvest photons for photosynthesis using light-harvesting complexes (LHCs)-an array of chlorophyll proteins that can reversibly switch from harvesting to energy-dissipation mode to prevent over-excitation and damage of the photosynthetic apparatus. In unicellular algae and lower plants this process requires the LHCSR proteins which senses over-acidification of the lumen trough protonatable residues exposed to the thylakoid lumen to activate quenching reactions. Further activation is provided by replacement of the violaxanthin ligand with its de-epoxidized product, zeaxanthin, also induced by excess light. We have produced the ppLHCSR1 protein from Physcomitrella patens by over-expression in tobacco and purified it in either its violaxanthin- or the zeaxanthin-binding form with the aim of analyzing their spectroscopic properties at either neutral or acidic pH. Using femtosecond spectroscopy, we demonstrated that the energy dissipation is achieved by two distinct quenching mechanism which are both activated by low pH. The first is present in both ppLHCSR1-Vio and ppLHCSR1-Zea and is characterized by 30-40ps time constant. The spectrum of the quenching product is reminiscent of a carotenoid radical cation, suggesting that the pH-induced quenching mechanism is likely electron transfer from the carotenoid to the excited Chl a. In addition, a second quenching channel populating the S1 state of carotenoid via energy transfer from Chl is found exclusively in the ppLHCSR1-Zea at pH5. These results provide proof of principle that more than one quenching mechanism may operate in the LHC superfamily and also help understanding the photoprotective role of LHCSR proteins and the evolution of LHC antennae.
650    _2
$a mechy $x genetika $x metabolismus $x účinky záření $7 D019068
650    _2
$a chlorofyl $x metabolismus $7 D002734
650    _2
$a transport elektronů $7 D004579
650    _2
$a přenos energie $7 D004735
650    _2
$a koncentrace vodíkových iontů $7 D006863
650    _2
$a kinetika $7 D007700
650    _2
$a světlosběrné proteinové komplexy $x genetika $x metabolismus $x účinky záření $7 D045342
650    _2
$a biologické modely $7 D008954
650    12
$a fotosyntéza $x genetika $x účinky záření $7 D010788
650    _2
$a geneticky modifikované rostliny $x genetika $x metabolismus $x účinky záření $7 D030821
650    _2
$a vazba proteinů $7 D011485
650    _2
$a spektrální analýza $7 D013057
650    _2
$a tabák $x genetika $x metabolismus $x účinky záření $7 D014026
650    _2
$a xanthofyly $x metabolismus $7 D024341
650    _2
$a zeaxanthiny $x metabolismus $7 D065146
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Staleva-Musto, Hristina $u Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic.
700    1_
$a Capaldi, Stefano $u Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
700    1_
$a Ballottari, Matteo $u Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
700    1_
$a Bassi, Roberto $u Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy. Electronic address: roberto.bassi@univr.it.
700    1_
$a Polívka, Tomáš $u Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic. Electronic address: tpolivka@jcu.cz.
773    0_
$w MED00009314 $t Biochimica et biophysica acta $x 0006-3002 $g Roč. 1857, č. 12 (2016), s. 1870-1878
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27614061 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171025123954 $b ABA008
999    __
$a ok $b bmc $g 1254954 $s 992388
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 1857 $c 12 $d 1870-1878 $e 20160907 $i 0006-3002 $m Biochimica et biophysica acta $n Biochim Biophys Acta $x MED00009314
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...