-
Je něco špatně v tomto záznamu ?
Bacterial resistance to silver nanoparticles and how to overcome it
A. Panáček, L. Kvítek, M. Smékalová, R. Večeřová, M. Kolář, M. Röderová, F. Dyčka, M. Šebela, R. Prucek, O. Tomanec, R. Zbořil,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NV15-27726A
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
Zdroj
NLK
ProQuest Central
od 2006-10-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2006-10-01 do Před 1 rokem
- MeSH
- antibakteriální látky * chemie farmakologie MeSH
- bakteriální léková rezistence * MeSH
- Escherichia coli účinky léků MeSH
- kovové nanočástice chemie MeSH
- mikrobiální testy citlivosti MeSH
- Pseudomonas aeruginosa účinky léků MeSH
- stabilita léku MeSH
- stříbro * chemie farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18010257
- 003
- CZ-PrNML
- 005
- 20240117094425.0
- 007
- ta
- 008
- 180404s2018 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41565-017-0013-y $2 doi
- 035 __
- $a (PubMed)29203912
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Panáček, Aleš $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University Olomouc, Olomouc, Czech Republic.
- 245 10
- $a Bacterial resistance to silver nanoparticles and how to overcome it / $c A. Panáček, L. Kvítek, M. Smékalová, R. Večeřová, M. Kolář, M. Röderová, F. Dyčka, M. Šebela, R. Prucek, O. Tomanec, R. Zbořil,
- 520 9_
- $a Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.
- 650 12
- $a antibakteriální látky $x chemie $x farmakologie $7 D000900
- 650 12
- $a bakteriální léková rezistence $7 D024881
- 650 _2
- $a stabilita léku $7 D004355
- 650 _2
- $a Escherichia coli $x účinky léků $7 D004926
- 650 _2
- $a kovové nanočástice $x chemie $7 D053768
- 650 _2
- $a mikrobiální testy citlivosti $7 D008826
- 650 _2
- $a Pseudomonas aeruginosa $x účinky léků $7 D011550
- 650 12
- $a stříbro $x chemie $x farmakologie $7 D012834
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kvítek, Libor $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University Olomouc, Olomouc, Czech Republic. libor.kvitek@upol.cz.
- 700 1_
- $a Smékalová, Monika $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University Olomouc, Olomouc, Czech Republic.
- 700 1_
- $a Večeřová, Renata $u Department of Microbiology, Palacký University Olomouc, Olomouc, Czech Republic.
- 700 1_
- $a Kolář, Milan $u Department of Microbiology, Palacký University Olomouc, Olomouc, Czech Republic.
- 700 1_
- $a Röderová, Magdalena $u Department of Microbiology, Palacký University Olomouc, Olomouc, Czech Republic.
- 700 1_
- $a Dyčka, Filip, $d 1981- $u Department of Protein Biochemistry and Proteomics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic. $7 xx0312809
- 700 1_
- $a Šebela, Marek $u Department of Protein Biochemistry and Proteomics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic.
- 700 1_
- $a Prucek, Robert $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University Olomouc, Olomouc, Czech Republic.
- 700 1_
- $a Tomanec, Ondřej $u Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Olomouc, Czech Republic.
- 700 1_
- $a Zbořil, Radek $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University Olomouc, Olomouc, Czech Republic. radek.zboril@upol.cz.
- 773 0_
- $w MED00154983 $t Nature nanotechnology $x 1748-3395 $g Roč. 13, č. 1 (2018), s. 65-71
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29203912 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180404 $b ABA008
- 991 __
- $a 20240117094421 $b ABA008
- 999 __
- $a ok $b bmc $g 1287742 $s 1007069
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 13 $c 1 $d 65-71 $e 20171204 $i 1748-3395 $m Nature nanotechnology $n Nat. nanotechnol. (Print) $x MED00154983
- GRA __
- $a NV15-27726A $p MZ0
- LZP __
- $a Pubmed-20180404