-
Je něco špatně v tomto záznamu ?
CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells
K. Skvarova Kramarzova, MJ. Osborn, BR. Webber, AP. DeFeo, AN. McElroy, CJ. Kim, J. Tolar,
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
NLK
Free Medical Journals
od 2000
Freely Accessible Science Journals
od 2000
PubMed Central
od 2007
Europe PubMed Central
od 2007
ProQuest Central
od 2000-03-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2007-01-01
Health & Medicine (ProQuest)
od 2000-03-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
PubMed
28613254
DOI
10.3390/ijms18061269
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- CRISPR-Cas systémy * MeSH
- delece genu MeSH
- editace genu metody MeSH
- Fanconiho anemie genetika metabolismus terapie MeSH
- fibroblasty metabolismus MeSH
- genetická terapie metody MeSH
- kultivované buňky MeSH
- lidé MeSH
- protein BRCA2 genetika metabolismus MeSH
- sekvence CRISPR MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Fanconi anemia (FA) is an inherited condition characterized by impaired DNA repair, physical anomalies, bone marrow failure, and increased incidence of malignancy. Gene editing holds great potential to precisely correct the underlying genetic cause such that gene expression remains under the endogenous control mechanisms. This has been accomplished to date only in transformed cells or their reprogrammed induced pluripotent stem cell counterparts; however, it has not yet been reported in primary patient cells. Here we show the ability to correct a mutation in Fanconi anemia D1 (FANCD1) primary patient fibroblasts. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system was employed to target and correct aFANCD1gene deletion. Homologous recombination using an oligonucleotide donor was achieved and a pure population of modified cells was obtained by using inhibitors of poly adenosine diphosphate-ribose polymerase (poly ADP-ribose polymerase).FANCD1function was restored and we did not observe any promiscuous cutting of the CRISPR/Cas9 at off target sites. This consideration is crucial in the context of the pre-malignant FA phenotype. Altogether we show the ability to correct a patient mutation in primaryFANCD1cells in a precise manner. These proof of principle studies support expanded application of gene editing for FA.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18010491
- 003
- CZ-PrNML
- 005
- 20180404142052.0
- 007
- ta
- 008
- 180404s2017 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/ijms18061269 $2 doi
- 035 __
- $a (PubMed)28613254
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Skvarova Kramarzova, Karolina $u Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA. karolina.skvarova@gmail.com. Childhood Leukemia Investigation Prague (CLIP), Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague 15006, Czech Republic. karolina.skvarova@gmail.com.
- 245 10
- $a CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells / $c K. Skvarova Kramarzova, MJ. Osborn, BR. Webber, AP. DeFeo, AN. McElroy, CJ. Kim, J. Tolar,
- 520 9_
- $a Fanconi anemia (FA) is an inherited condition characterized by impaired DNA repair, physical anomalies, bone marrow failure, and increased incidence of malignancy. Gene editing holds great potential to precisely correct the underlying genetic cause such that gene expression remains under the endogenous control mechanisms. This has been accomplished to date only in transformed cells or their reprogrammed induced pluripotent stem cell counterparts; however, it has not yet been reported in primary patient cells. Here we show the ability to correct a mutation in Fanconi anemia D1 (FANCD1) primary patient fibroblasts. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system was employed to target and correct aFANCD1gene deletion. Homologous recombination using an oligonucleotide donor was achieved and a pure population of modified cells was obtained by using inhibitors of poly adenosine diphosphate-ribose polymerase (poly ADP-ribose polymerase).FANCD1function was restored and we did not observe any promiscuous cutting of the CRISPR/Cas9 at off target sites. This consideration is crucial in the context of the pre-malignant FA phenotype. Altogether we show the ability to correct a patient mutation in primaryFANCD1cells in a precise manner. These proof of principle studies support expanded application of gene editing for FA.
- 650 _2
- $a protein BRCA2 $x genetika $x metabolismus $7 D024682
- 650 12
- $a CRISPR-Cas systémy $7 D064113
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a sekvence CRISPR $7 D064112
- 650 _2
- $a Fanconiho anemie $x genetika $x metabolismus $x terapie $7 D005199
- 650 _2
- $a fibroblasty $x metabolismus $7 D005347
- 650 _2
- $a delece genu $7 D017353
- 650 _2
- $a editace genu $x metody $7 D000072669
- 650 _2
- $a genetická terapie $x metody $7 D015316
- 650 _2
- $a lidé $7 D006801
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Osborn, Mark J $u Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA. osbor026@umn.edu. Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA. osbor026@umn.edu. Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA. osbor026@umn.edu. Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA. osbor026@umn.edu.
- 700 1_
- $a Webber, Beau R $u Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA. webb0178@umn.edu.
- 700 1_
- $a DeFeo, Anthony P $u Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA. apdefeo@umn.edu.
- 700 1_
- $a McElroy, Amber N $u Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA. leira001@umn.edu.
- 700 1_
- $a Kim, Chong Jai $u Asan Institute for Life Sciences, Asan Medical Center, Asan-Minnesota Institute for Innovating Transplantation, Seoul 138-736, Korea. ckim@amc.seoul.kr.
- 700 1_
- $a Tolar, Jakub $u Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA. tolar003@umn.edu. Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA. tolar003@umn.edu. Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA. tolar003@umn.edu.
- 773 0_
- $w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 18, č. 6 (2017)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28613254 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180404 $b ABA008
- 991 __
- $a 20180404142132 $b ABA008
- 999 __
- $a ok $b bmc $g 1287976 $s 1007303
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 18 $c 6 $e 20170614 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
- LZP __
- $a Pubmed-20180404