Risk Minimization of Hemolytic Disease of the Fetus and Newborn Using Droplet Digital PCR Method for Accurate Fetal Genotype Assessment of RHD, KEL, and RHCE from Cell-Free Fetal DNA of Maternal Plasma

. 2021 Apr 28 ; 11 (5) : . [epub] 20210428

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33925253

Grantová podpora
MH CZ-DRO FNOL, 00098892 Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 33925253
PubMed Central PMC8146004
DOI 10.3390/diagnostics11050803
PII: diagnostics11050803
Knihovny.cz E-zdroje

The molecular pathology of hemolytic disease of the fetus and newborn (HDFN) is determined by different RHD, RHCE, and KEL genotypes and by blood group incompatibility between the mother and fetus that is caused by erythrocyte antigen presence/absence on the cell surface. In the Czech Republic, clinically significant antierythrocyte alloantibodies include anti-D, anti-K, anti C/c, and anti-E. Deletion of the RHD gene and then three single nucleotide polymorphisms in the RHCE and KEL genes (rs676785, rs609320, and rs8176058) are the most common. The aim of this study is to develop effective and precise monitoring of fetal genotypes from maternal plasma of these polymorphisms using droplet digital (dd)PCR. Fifty-three plasma DNA samples (from 10 to 18 weeks of gestation) were analyzed (10 RHD, 33 RHCE, and 10 KEL). The ddPCR methodology was validated on the basis of the already elaborated and established method of minisequencing and real-time PCR and with newborn phenotype confirmation. The results of ddPCR were in 100% agreement with minisequencing and real-time PCR and also with newborn phenotype. ddPCR can fully replace the reliable but more time-consuming method of minisequencing and real-time PCR RHD examination. Accurate and rapid noninvasive fetal genotyping minimizes the possibility of HDFN developing.

Zobrazit více v PubMed

Avent N.D., Reid M. The Rh blood group system. Blood. 2000;95:375–387. doi: 10.1182/blood.V95.2.375. PubMed DOI

Bowman J.M. RhD hemolytic disease of the newborn. N. Engl. J. Med. 1998;339:1775–1777. doi: 10.1056/NEJM199812103392410. PubMed DOI

Eder A. Update on HDFN: New information on long-standing controversies. Immunohematology. 2006;22:188–195. PubMed

Urbaniak S., Greiss S. RhD haemolytic disease of the fetus and the newborn. Blood Rev. 2000;14:44–61. doi: 10.1054/blre.1999.0123. PubMed DOI

Klein H.G., Anstee D.J., editors. Mollison’s Blood Transfusion in Clinical Medicine. 12th ed. Blackwell Scientific; Hoboken, NJ, USA: 2014. Hemolytic disease of the fetus and the newborn; pp. 499–549.

de Haas M., Thurik F.F., Koelewijn J.M., van der Schoot C.E. Haemolytic disease of the fetus and newborn. Vox Sang. 2015;109:99–113. doi: 10.1111/vox.12265. PubMed DOI

Moise K.J. Fetal anemia due to non-Rhesus-D red-cell alloimmunization. Semin. Fetal Neonatal Med. 2008;13:207–214. doi: 10.1016/j.siny.2008.02.007. PubMed DOI

Quinley E.D. Immunohaematology: Principles and Practice. Lippincott; New York, NY, USA: 1993. Haemolytic disease of the newborn; pp. 277–308.

Moise K.J. Hemolytic disease of the fetus and newborn. In: Greene M.F., Creasy R.K., Resnik R., Iams J.D., Lockwood C.J., Moore T.R., editors. Maternal-Fetal Medicine: Principles and Practice. 6th ed. Saunders; Philadelphia, PA, USA: 2008. pp. 477–503.

Hendrickson J.E., Delaney M. Hemolytic Disease of the Fetus and Newborn: Modern Practice and Future Investigations. Transfus. Med. Rev. 2016;30:159–164. doi: 10.1016/j.tmrv.2016.05.008. PubMed DOI

Maheshwari A., Carlo W.A. Hemolytic disease of the Newborn (erythroblastosis fetalis) In: Kliegman R.M., Stanton B.F., Schor N.F., St Geme J.W. III, Behrman R.E., editors. Nelson Textbook of Pediatrics. 19th ed. Thomas Press India Ltd.; New Delhi, India: 2012. pp. 615–619.

Maitra A. Disease of infancy and childhood. In: Kumar V., Abbas A.K., Fausto N., Aster J.C., editors. Robbins and Cortan Pathologic Basis of Disease. 8th ed. Elsevier Inc.; New Delhi, India: 2010. pp. 447–486.

Kennedy M.S. Perinatal issues in transfusion practices. In: Roback J.D., Grossman B.J., Harris T., Hillyer C.D., editors. Technical Manual. 17th ed. AABB; Bethesda, MD, USA: 2011. pp. 631–645.

Stephen J., Cairns L.S., Pickford W.J., Vickers M.A., Urbaniak S.J., Barker R.N. Identification, immunomodulatory activity, and immunogenicity of the major helper T-cell epitope on the K blood group antigen. Blood. 2012;119:5563–5574. doi: 10.1182/blood-2012-02-410324. PubMed DOI

Daniels G. Human Blood Groups. 3rd ed. Wiley-Blackwell; Oxford, UK: 2013. Kell and Kx Blood Group Systems. Chapter 7.

Wagner F.F., Flegel W.A. RHD gene deletion occurred in the Rhesus box. Blood. 2000;95:3662–3668. doi: 10.1182/blood.V95.12.3662. PubMed DOI

Daniels G. Human Blood Groups. 2nd ed. Blackwell Science; Oxford, UK: 2002.

Colin Y., Chérif-Zahar B., Le Van Kim C., Raynal V., Van Huffel V., Cartron J.P. Genetic basis of the RhD−positive and RhD−negative blood group polymorphism as determined by Southern analysis. Blood. 1991;78:2747–2752. doi: 10.1182/blood.V78.10.2747.2747. PubMed DOI

Mouro I., Colin Y., Chérif-Zahar B., Cartron J.P., Le Van Kim C. Molecular genetic basis of the human Rhesus blood group system. Nat. Genet. 1993;5:62–65. doi: 10.1038/ng0993-62. PubMed DOI

Reid M.E., Lomas-Francis C. The Blood Group Antigen Facts Book. 2nd ed. Elsevier Academic Press; New York, NY, USA: 2004.

Reid M.E., Denomme G.A. DNA-based methods in the immunohematology reference laboratory. Transfus. Apher. Sci. 2011;44:65–72. doi: 10.1016/j.transci.2010.12.011. PubMed DOI PMC

Arnoni C.P., Muniz J.G., de Paula T.A., Person R.D., Gazito D., Baleotti WJr Barreto J.A., Castilho L., Latini F.R. An easy and efficient strategy for KEL genotyping in a multiethnic population. Rev. Bras. Hematol. Hemoter. 2013;35:99–102. doi: 10.5581/1516-8484.20130029. PubMed DOI PMC

Lee S., Wu X., Reid M., Zelinski T., Redman C. Molecular basis of the Kell (K1) phenotype. Blood. 1995;85:912–916. doi: 10.1182/blood.V85.4.912.bloodjournal854912. PubMed DOI

Poole J., Warke N., Hustinx H., Taleghani B.M., Martin P., Finning K., Crew V.K., Green C., Bromilow I., Daniels G. A KEL gene encoding serine at position 193 of the Kell glycoprotein results in expression of KEL1 antigen. Transfusion. 2006;46:1879–1885. doi: 10.1111/j.1537-2995.2006.00993.x. PubMed DOI

Lee S. Molecular basis of Kell blood group phenotypes. Vox Sang. 1997;73:1–11. doi: 10.1159/000461892. Erratum in: Vox Sang.1998, 74, 58. PubMed DOI

Bohmova J., Lubusky M., Holuskova I., Studnickova M., Kratochvilova R., Krejcirikova E., Durdova V., Kratochvilova T., Dusek L., Prochazka M., et al. Two Reliable Methodical Approaches for Non-Invasive RHD Genotyping of a Fetus from Maternal Plasma. Diagnostics. 2020;10:564. doi: 10.3390/diagnostics10080564. PubMed DOI PMC

Böhmova J., Vodicka R., Lubusky M., Holuskova I., Studnickova M., Kratochvilova R., Krejcirikova E., Janikova M., Durdová V., Dolezalová T., et al. Clinical Potential of Effective Noninvasive Exclusion of KEL1-Positive Fetuses in KEL1-Negative Pregnant Women. Fetal Diagn Ther. 2016;40:48–53. doi: 10.1159/000441296. PubMed DOI

Durdova V., Bohmova J., Kratochvilova T., Vodicka R., Holuskova I., Langova K., Lubusky M. The effectiveness of KEL and RHCE fetal genotype assessment in alloimmunized women by minisequencing. Ceska Gynekol. 2020;85:164–173. PubMed

Barrett A.N., Xiong L., Tan T.Z., Advani H.V., Hua R., Laureano-Asibal C., Soong R., Biswas A., Nagarajan N., Choolani M. Measurement of fetal fraction in cell-free DNA from maternal plasma using a panel of insertion/deletion polymorphisms. PLoS ONE. 2017;12:e0186771. doi: 10.1371/journal.pone.0186771. PubMed DOI PMC

Schlütter J.M., Hatt L., Bach C., Kirkegaard I., Kølvraa S., Uldbjerg N. The cell-free fetal DNA fraction in maternal blood decreases after physical activity. Prenat. Diagn. 2014;34:341–344. doi: 10.1002/pd.4306. PubMed DOI

Wong D., Moturi S., Angkachatchai V., Mueller R., DeSantis G., van den Boom D., Ehrich M. Optimizing blood collection, transport and storage conditions for cell free DNA increases access to prenatal testing. Clin. Biochem. 2013;46:1099–1104. doi: 10.1016/j.clinbiochem.2013.04.023. PubMed DOI

Yang W.C., Zhu L., Qiu Y.M., Zhou B.X., Cheng J.L., Wei C.L., Chen H.C., Li L.Y., Fu X.D., Fu J.J. Isolation and analysis of cell-free fetal DNA from maternal peripheral blood in Chinese women. Genet. Mol. Res. 2015;14:18078–18089. doi: 10.4238/2015.December.22.34. PubMed DOI

Vodicka R., Vrtel R., Dusek L., Prochazka M., Schneiderova E., Vrbicka D., Krejcirikova E., Dhaifalah I., Santava A., Santavy J. Refined fluorescent STR quantification of cell-free fetal DNA during pregnancy in physiological and Down syndrome fetuses. Prenat. Diagn. 2008;28:425–433. doi: 10.1002/pd.1996. PubMed DOI

Svobodová I., Pazourková E., Hořínek A., Novotná M., Calda P., Korabečná M. Performance of Droplet Digital PCR in Non-Invasive Fetal RHD Genotyping-Comparison with a Routine Real-Time PCR Based Approach. PLoS ONE. 2015;10:e0142572. doi: 10.1371/journal.pone.0142572. PubMed DOI PMC

Sillence K.A., Roberts L.A., Hollands H.J., Thompson H.P., Kiernan M., Madgett T.E., Welch C.R., Avent N.D. Fetal Sex and RHD Genotyping with Digital PCR Demonstrates Greater Sensitivity than Real-time PCR. Clin. Chem. 2015;61:1399–1407. doi: 10.1373/clinchem.2015.239137. PubMed DOI

Ouzegdouh Mammasse Y., Chenet C., Drubay D., Martageix C., Cartron J.P., Vainchenker W., Petermann R. A new efficient tool for non-invasive diagnosis of fetomaternal platelet antigen incompatibility. Br. J. Haematol. 2020;190:787–798. doi: 10.1111/bjh.16593. PubMed DOI

Finning K., Martin P., Summers J., Daniels G. Fetal genotyping for the K (Kell) and Rh C, c, and E blood groups on cell-free fetal DNA in maternal plasma. Transfusion. 2007;47:2126–2133. doi: 10.1111/j.1537-2995.2007.01437.x. PubMed DOI

Cro’ F., Lapucci C., Vicari E., Salsi G., Rizzo N., Farina A. An innovative test for non-invasive Kell genotyping on circulating fetal DNA by means of the allelic discrimination of K1 and K2 antigens. Am. J. Reprod. Immunol. 2016;76:499–503. doi: 10.1111/aji.12593. PubMed DOI

O’Brien H., Hyland C., Schoeman E., Flower R., Daly J., Gardener G. Non-invasive prenatal testing (NIPT) for fetal Kell, Duffy and Rh blood group antigen prediction in alloimmunised pregnant women: Power of droplet digital PCR. Br. J. Haematol. 2020;189:e90–e94. doi: 10.1111/bjh.16500. PubMed DOI

Wienzek-Lischka S., Krautwurst A., Fröhner V., Hackstein H., Gattenlöhner S., Bräuninger A., Axt-Fliedner R., Degenhardt J., Deisting C., Santoso S., et al. Noninvasive fetal genotyping of human platelet antigen-1a using targeted massively parallel sequencing. Transfusion. 2015;55:1538–1544. doi: 10.1111/trf.13102. PubMed DOI

Caswell R.C., Snowsill T., Houghton J.A.L., Chakera A.J., Shepherd M.H., Laver T.W., Knight B.A., Wright D., Hattersley A.T., Ellard S. Noninvasive Fetal Genotyping by Droplet Digital PCR to Identify Maternally Inherited Monogenic Diabetes Variants. Clin. Chem. 2020;66:958–965. doi: 10.1093/clinchem/hvaa104. PubMed DOI PMC

Gruber A., Pacault M., El Khattabi L.A., Vaucouleur N., Orhant L., Bienvenu T., Girodon E., Vidaud D., Leturcq F., Costa C., et al. Non-invasive prenatal diagnosis of paternally inherited disorders from maternal plasma: Detection of NF1 and CFTR mutations using droplet digital PCR. Clin. Chem. Lab. Med. 2018;56:728–738. doi: 10.1515/cclm-2017-0689. PubMed DOI

Debrand E., Lykoudi A., Bradshaw E., Allen S.K. A Non-Invasive Droplet Digital PCR (ddPCR) Assay to Detect Paternal CFTR Mutations in the Cell-Free Fetal DNA (cffDNA) of Three Pregnancies at Risk of Cystic Fibrosis via Compound Heterozygosity. PLoS ONE. 2015;10:e0142729. doi: 10.1371/journal.pone.0142729. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...