Risk Minimization of Hemolytic Disease of the Fetus and Newborn Using Droplet Digital PCR Method for Accurate Fetal Genotype Assessment of RHD, KEL, and RHCE from Cell-Free Fetal DNA of Maternal Plasma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MH CZ-DRO FNOL, 00098892
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
33925253
PubMed Central
PMC8146004
DOI
10.3390/diagnostics11050803
PII: diagnostics11050803
Knihovny.cz E-zdroje
- Klíčová slova
- KEL, RHCE, RHD, blood group incompatibility, cell-free fetal DNA, droplet digital PCR, hemolytic disease of fetus and newborn, noninvasive fetal genotyping,
- Publikační typ
- časopisecké články MeSH
The molecular pathology of hemolytic disease of the fetus and newborn (HDFN) is determined by different RHD, RHCE, and KEL genotypes and by blood group incompatibility between the mother and fetus that is caused by erythrocyte antigen presence/absence on the cell surface. In the Czech Republic, clinically significant antierythrocyte alloantibodies include anti-D, anti-K, anti C/c, and anti-E. Deletion of the RHD gene and then three single nucleotide polymorphisms in the RHCE and KEL genes (rs676785, rs609320, and rs8176058) are the most common. The aim of this study is to develop effective and precise monitoring of fetal genotypes from maternal plasma of these polymorphisms using droplet digital (dd)PCR. Fifty-three plasma DNA samples (from 10 to 18 weeks of gestation) were analyzed (10 RHD, 33 RHCE, and 10 KEL). The ddPCR methodology was validated on the basis of the already elaborated and established method of minisequencing and real-time PCR and with newborn phenotype confirmation. The results of ddPCR were in 100% agreement with minisequencing and real-time PCR and also with newborn phenotype. ddPCR can fully replace the reliable but more time-consuming method of minisequencing and real-time PCR RHD examination. Accurate and rapid noninvasive fetal genotyping minimizes the possibility of HDFN developing.
Zobrazit více v PubMed
Avent N.D., Reid M. The Rh blood group system. Blood. 2000;95:375–387. doi: 10.1182/blood.V95.2.375. PubMed DOI
Bowman J.M. RhD hemolytic disease of the newborn. N. Engl. J. Med. 1998;339:1775–1777. doi: 10.1056/NEJM199812103392410. PubMed DOI
Eder A. Update on HDFN: New information on long-standing controversies. Immunohematology. 2006;22:188–195. PubMed
Urbaniak S., Greiss S. RhD haemolytic disease of the fetus and the newborn. Blood Rev. 2000;14:44–61. doi: 10.1054/blre.1999.0123. PubMed DOI
Klein H.G., Anstee D.J., editors. Mollison’s Blood Transfusion in Clinical Medicine. 12th ed. Blackwell Scientific; Hoboken, NJ, USA: 2014. Hemolytic disease of the fetus and the newborn; pp. 499–549.
de Haas M., Thurik F.F., Koelewijn J.M., van der Schoot C.E. Haemolytic disease of the fetus and newborn. Vox Sang. 2015;109:99–113. doi: 10.1111/vox.12265. PubMed DOI
Moise K.J. Fetal anemia due to non-Rhesus-D red-cell alloimmunization. Semin. Fetal Neonatal Med. 2008;13:207–214. doi: 10.1016/j.siny.2008.02.007. PubMed DOI
Quinley E.D. Immunohaematology: Principles and Practice. Lippincott; New York, NY, USA: 1993. Haemolytic disease of the newborn; pp. 277–308.
Moise K.J. Hemolytic disease of the fetus and newborn. In: Greene M.F., Creasy R.K., Resnik R., Iams J.D., Lockwood C.J., Moore T.R., editors. Maternal-Fetal Medicine: Principles and Practice. 6th ed. Saunders; Philadelphia, PA, USA: 2008. pp. 477–503.
Hendrickson J.E., Delaney M. Hemolytic Disease of the Fetus and Newborn: Modern Practice and Future Investigations. Transfus. Med. Rev. 2016;30:159–164. doi: 10.1016/j.tmrv.2016.05.008. PubMed DOI
Maheshwari A., Carlo W.A. Hemolytic disease of the Newborn (erythroblastosis fetalis) In: Kliegman R.M., Stanton B.F., Schor N.F., St Geme J.W. III, Behrman R.E., editors. Nelson Textbook of Pediatrics. 19th ed. Thomas Press India Ltd.; New Delhi, India: 2012. pp. 615–619.
Maitra A. Disease of infancy and childhood. In: Kumar V., Abbas A.K., Fausto N., Aster J.C., editors. Robbins and Cortan Pathologic Basis of Disease. 8th ed. Elsevier Inc.; New Delhi, India: 2010. pp. 447–486.
Kennedy M.S. Perinatal issues in transfusion practices. In: Roback J.D., Grossman B.J., Harris T., Hillyer C.D., editors. Technical Manual. 17th ed. AABB; Bethesda, MD, USA: 2011. pp. 631–645.
Stephen J., Cairns L.S., Pickford W.J., Vickers M.A., Urbaniak S.J., Barker R.N. Identification, immunomodulatory activity, and immunogenicity of the major helper T-cell epitope on the K blood group antigen. Blood. 2012;119:5563–5574. doi: 10.1182/blood-2012-02-410324. PubMed DOI
Daniels G. Human Blood Groups. 3rd ed. Wiley-Blackwell; Oxford, UK: 2013. Kell and Kx Blood Group Systems. Chapter 7.
Wagner F.F., Flegel W.A. RHD gene deletion occurred in the Rhesus box. Blood. 2000;95:3662–3668. doi: 10.1182/blood.V95.12.3662. PubMed DOI
Daniels G. Human Blood Groups. 2nd ed. Blackwell Science; Oxford, UK: 2002.
Colin Y., Chérif-Zahar B., Le Van Kim C., Raynal V., Van Huffel V., Cartron J.P. Genetic basis of the RhD−positive and RhD−negative blood group polymorphism as determined by Southern analysis. Blood. 1991;78:2747–2752. doi: 10.1182/blood.V78.10.2747.2747. PubMed DOI
Mouro I., Colin Y., Chérif-Zahar B., Cartron J.P., Le Van Kim C. Molecular genetic basis of the human Rhesus blood group system. Nat. Genet. 1993;5:62–65. doi: 10.1038/ng0993-62. PubMed DOI
Reid M.E., Lomas-Francis C. The Blood Group Antigen Facts Book. 2nd ed. Elsevier Academic Press; New York, NY, USA: 2004.
Reid M.E., Denomme G.A. DNA-based methods in the immunohematology reference laboratory. Transfus. Apher. Sci. 2011;44:65–72. doi: 10.1016/j.transci.2010.12.011. PubMed DOI PMC
Arnoni C.P., Muniz J.G., de Paula T.A., Person R.D., Gazito D., Baleotti WJr Barreto J.A., Castilho L., Latini F.R. An easy and efficient strategy for KEL genotyping in a multiethnic population. Rev. Bras. Hematol. Hemoter. 2013;35:99–102. doi: 10.5581/1516-8484.20130029. PubMed DOI PMC
Lee S., Wu X., Reid M., Zelinski T., Redman C. Molecular basis of the Kell (K1) phenotype. Blood. 1995;85:912–916. doi: 10.1182/blood.V85.4.912.bloodjournal854912. PubMed DOI
Poole J., Warke N., Hustinx H., Taleghani B.M., Martin P., Finning K., Crew V.K., Green C., Bromilow I., Daniels G. A KEL gene encoding serine at position 193 of the Kell glycoprotein results in expression of KEL1 antigen. Transfusion. 2006;46:1879–1885. doi: 10.1111/j.1537-2995.2006.00993.x. PubMed DOI
Lee S. Molecular basis of Kell blood group phenotypes. Vox Sang. 1997;73:1–11. doi: 10.1159/000461892. Erratum in: Vox Sang.1998, 74, 58. PubMed DOI
Bohmova J., Lubusky M., Holuskova I., Studnickova M., Kratochvilova R., Krejcirikova E., Durdova V., Kratochvilova T., Dusek L., Prochazka M., et al. Two Reliable Methodical Approaches for Non-Invasive RHD Genotyping of a Fetus from Maternal Plasma. Diagnostics. 2020;10:564. doi: 10.3390/diagnostics10080564. PubMed DOI PMC
Böhmova J., Vodicka R., Lubusky M., Holuskova I., Studnickova M., Kratochvilova R., Krejcirikova E., Janikova M., Durdová V., Dolezalová T., et al. Clinical Potential of Effective Noninvasive Exclusion of KEL1-Positive Fetuses in KEL1-Negative Pregnant Women. Fetal Diagn Ther. 2016;40:48–53. doi: 10.1159/000441296. PubMed DOI
Durdova V., Bohmova J., Kratochvilova T., Vodicka R., Holuskova I., Langova K., Lubusky M. The effectiveness of KEL and RHCE fetal genotype assessment in alloimmunized women by minisequencing. Ceska Gynekol. 2020;85:164–173. PubMed
Barrett A.N., Xiong L., Tan T.Z., Advani H.V., Hua R., Laureano-Asibal C., Soong R., Biswas A., Nagarajan N., Choolani M. Measurement of fetal fraction in cell-free DNA from maternal plasma using a panel of insertion/deletion polymorphisms. PLoS ONE. 2017;12:e0186771. doi: 10.1371/journal.pone.0186771. PubMed DOI PMC
Schlütter J.M., Hatt L., Bach C., Kirkegaard I., Kølvraa S., Uldbjerg N. The cell-free fetal DNA fraction in maternal blood decreases after physical activity. Prenat. Diagn. 2014;34:341–344. doi: 10.1002/pd.4306. PubMed DOI
Wong D., Moturi S., Angkachatchai V., Mueller R., DeSantis G., van den Boom D., Ehrich M. Optimizing blood collection, transport and storage conditions for cell free DNA increases access to prenatal testing. Clin. Biochem. 2013;46:1099–1104. doi: 10.1016/j.clinbiochem.2013.04.023. PubMed DOI
Yang W.C., Zhu L., Qiu Y.M., Zhou B.X., Cheng J.L., Wei C.L., Chen H.C., Li L.Y., Fu X.D., Fu J.J. Isolation and analysis of cell-free fetal DNA from maternal peripheral blood in Chinese women. Genet. Mol. Res. 2015;14:18078–18089. doi: 10.4238/2015.December.22.34. PubMed DOI
Vodicka R., Vrtel R., Dusek L., Prochazka M., Schneiderova E., Vrbicka D., Krejcirikova E., Dhaifalah I., Santava A., Santavy J. Refined fluorescent STR quantification of cell-free fetal DNA during pregnancy in physiological and Down syndrome fetuses. Prenat. Diagn. 2008;28:425–433. doi: 10.1002/pd.1996. PubMed DOI
Svobodová I., Pazourková E., Hořínek A., Novotná M., Calda P., Korabečná M. Performance of Droplet Digital PCR in Non-Invasive Fetal RHD Genotyping-Comparison with a Routine Real-Time PCR Based Approach. PLoS ONE. 2015;10:e0142572. doi: 10.1371/journal.pone.0142572. PubMed DOI PMC
Sillence K.A., Roberts L.A., Hollands H.J., Thompson H.P., Kiernan M., Madgett T.E., Welch C.R., Avent N.D. Fetal Sex and RHD Genotyping with Digital PCR Demonstrates Greater Sensitivity than Real-time PCR. Clin. Chem. 2015;61:1399–1407. doi: 10.1373/clinchem.2015.239137. PubMed DOI
Ouzegdouh Mammasse Y., Chenet C., Drubay D., Martageix C., Cartron J.P., Vainchenker W., Petermann R. A new efficient tool for non-invasive diagnosis of fetomaternal platelet antigen incompatibility. Br. J. Haematol. 2020;190:787–798. doi: 10.1111/bjh.16593. PubMed DOI
Finning K., Martin P., Summers J., Daniels G. Fetal genotyping for the K (Kell) and Rh C, c, and E blood groups on cell-free fetal DNA in maternal plasma. Transfusion. 2007;47:2126–2133. doi: 10.1111/j.1537-2995.2007.01437.x. PubMed DOI
Cro’ F., Lapucci C., Vicari E., Salsi G., Rizzo N., Farina A. An innovative test for non-invasive Kell genotyping on circulating fetal DNA by means of the allelic discrimination of K1 and K2 antigens. Am. J. Reprod. Immunol. 2016;76:499–503. doi: 10.1111/aji.12593. PubMed DOI
O’Brien H., Hyland C., Schoeman E., Flower R., Daly J., Gardener G. Non-invasive prenatal testing (NIPT) for fetal Kell, Duffy and Rh blood group antigen prediction in alloimmunised pregnant women: Power of droplet digital PCR. Br. J. Haematol. 2020;189:e90–e94. doi: 10.1111/bjh.16500. PubMed DOI
Wienzek-Lischka S., Krautwurst A., Fröhner V., Hackstein H., Gattenlöhner S., Bräuninger A., Axt-Fliedner R., Degenhardt J., Deisting C., Santoso S., et al. Noninvasive fetal genotyping of human platelet antigen-1a using targeted massively parallel sequencing. Transfusion. 2015;55:1538–1544. doi: 10.1111/trf.13102. PubMed DOI
Caswell R.C., Snowsill T., Houghton J.A.L., Chakera A.J., Shepherd M.H., Laver T.W., Knight B.A., Wright D., Hattersley A.T., Ellard S. Noninvasive Fetal Genotyping by Droplet Digital PCR to Identify Maternally Inherited Monogenic Diabetes Variants. Clin. Chem. 2020;66:958–965. doi: 10.1093/clinchem/hvaa104. PubMed DOI PMC
Gruber A., Pacault M., El Khattabi L.A., Vaucouleur N., Orhant L., Bienvenu T., Girodon E., Vidaud D., Leturcq F., Costa C., et al. Non-invasive prenatal diagnosis of paternally inherited disorders from maternal plasma: Detection of NF1 and CFTR mutations using droplet digital PCR. Clin. Chem. Lab. Med. 2018;56:728–738. doi: 10.1515/cclm-2017-0689. PubMed DOI
Debrand E., Lykoudi A., Bradshaw E., Allen S.K. A Non-Invasive Droplet Digital PCR (ddPCR) Assay to Detect Paternal CFTR Mutations in the Cell-Free Fetal DNA (cffDNA) of Three Pregnancies at Risk of Cystic Fibrosis via Compound Heterozygosity. PLoS ONE. 2015;10:e0142729. doi: 10.1371/journal.pone.0142729. PubMed DOI PMC