-
Je něco špatně v tomto záznamu ?
Visualization of air and metal inhomogeneities in phantoms irradiated by carbon ion beams using prompt secondary ions
T. Gaa, M. Reinhart, B. Hartmann, J. Jakubek, P. Soukup, O. Jäkel, M. Martišíková,
Jazyk angličtina Země Itálie
Typ dokumentu časopisecké články
- MeSH
- celková dávka radioterapie MeSH
- fantomy radiodiagnostické * MeSH
- ionty MeSH
- kovy * MeSH
- lidé MeSH
- radiometrie metody MeSH
- radioterapie těžkými ionty * MeSH
- uhlík MeSH
- vzduch * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: Non-invasive methods for monitoring of the therapeutic ion beam extension in the patient are desired in order to handle deteriorations of the dose distribution related to changes of the patient geometry. In carbon ion radiotherapy, secondary light ions represent one of potential sources of information about the dose distribution in the irradiated target. The capability to detect range-changing inhomogeneities inside of an otherwise homogeneous phantom, based on single track measurements, is addressed in this paper. METHODS: Air and stainless steel inhomogeneities, with PMMA equivalent thickness of 10mm and 4.8mm respectively, were inserted into a PMMA-phantom at different positions in depth. Irradiations of the phantom with therapeutic carbon ion pencil beams were performed at the Heidelberg Ion Beam Therapy Center. Tracks of single secondary ions escaping the phantom under irradiation were detected with a pixelized semiconductor detector Timepix. The statistical relevance of the found differences between the track distributions with and without inhomogeneities was evaluated. RESULTS: Measured shifts of the distal edge and changes in the fragmentation probability make the presence of inhomogeneities inserted into the traversed medium detectable for both, 10mm air cavities and 1mm thick stainless steel. Moreover, the method was shown to be sensitive also on their position in the observed body, even when localized behind the Bragg-peak. CONCLUSIONS: The presented results demonstrate experimentally, that the method using distributions of single secondary ion tracks is sensitive to the changes of homogeneity of the traversed material for the studied geometries of the target.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18010520
- 003
- CZ-PrNML
- 005
- 20180419144111.0
- 007
- ta
- 008
- 180404s2017 it f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.ejmp.2017.05.055 $2 doi
- 035 __
- $a (PubMed)28576582
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a it
- 100 1_
- $a Gaa, T $u Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
- 245 10
- $a Visualization of air and metal inhomogeneities in phantoms irradiated by carbon ion beams using prompt secondary ions / $c T. Gaa, M. Reinhart, B. Hartmann, J. Jakubek, P. Soukup, O. Jäkel, M. Martišíková,
- 520 9_
- $a PURPOSE: Non-invasive methods for monitoring of the therapeutic ion beam extension in the patient are desired in order to handle deteriorations of the dose distribution related to changes of the patient geometry. In carbon ion radiotherapy, secondary light ions represent one of potential sources of information about the dose distribution in the irradiated target. The capability to detect range-changing inhomogeneities inside of an otherwise homogeneous phantom, based on single track measurements, is addressed in this paper. METHODS: Air and stainless steel inhomogeneities, with PMMA equivalent thickness of 10mm and 4.8mm respectively, were inserted into a PMMA-phantom at different positions in depth. Irradiations of the phantom with therapeutic carbon ion pencil beams were performed at the Heidelberg Ion Beam Therapy Center. Tracks of single secondary ions escaping the phantom under irradiation were detected with a pixelized semiconductor detector Timepix. The statistical relevance of the found differences between the track distributions with and without inhomogeneities was evaluated. RESULTS: Measured shifts of the distal edge and changes in the fragmentation probability make the presence of inhomogeneities inserted into the traversed medium detectable for both, 10mm air cavities and 1mm thick stainless steel. Moreover, the method was shown to be sensitive also on their position in the observed body, even when localized behind the Bragg-peak. CONCLUSIONS: The presented results demonstrate experimentally, that the method using distributions of single secondary ion tracks is sensitive to the changes of homogeneity of the traversed material for the studied geometries of the target.
- 650 12
- $a vzduch $7 D000388
- 650 _2
- $a uhlík $7 D002244
- 650 12
- $a radioterapie těžkými ionty $7 D063193
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a ionty $7 D007477
- 650 12
- $a kovy $7 D008670
- 650 12
- $a fantomy radiodiagnostické $7 D019047
- 650 _2
- $a radiometrie $x metody $7 D011874
- 650 _2
- $a celková dávka radioterapie $7 D011879
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Reinhart, M $u Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
- 700 1_
- $a Hartmann, B $u Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
- 700 1_
- $a Jakubek, J $u Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 12800 Prague 2, Czech Republic.
- 700 1_
- $a Soukup, P $u Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 12800 Prague 2, Czech Republic.
- 700 1_
- $a Jäkel, O $u Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Im Neuenheimer Feld 450, 69120 Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Im Neuenheimer Feld, Heidelberg, Germany.
- 700 1_
- $a Martišíková, M $u Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Im Neuenheimer Feld, Heidelberg, Germany. Electronic address: m.martisikova@dkfz.de.
- 773 0_
- $w MED00167391 $t Physica medica $x 1724-191X $g Roč. 38, č. - (2017), s. 140-147
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28576582 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180404 $b ABA008
- 991 __
- $a 20180419144213 $b ABA008
- 999 __
- $a ok $b bmc $g 1288005 $s 1007332
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 38 $c - $d 140-147 $e 20170530 $i 1724-191X $m Physica medica $n Phys Med $x MED00167391
- LZP __
- $a Pubmed-20180404