• Je něco špatně v tomto záznamu ?

Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings

I. Buzzacchera, M. Vorobii, NY. Kostina, A. de Los Santos Pereira, T. Riedel, M. Bruns, W. Ogieglo, M. Möller, CJ. Wilson, C. Rodriguez-Emmenegger,

. 2017 ; 18 (6) : 1983-1992. [pub] 20170512

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18010596

Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18010596
003      
CZ-PrNML
005      
20180418140009.0
007      
ta
008      
180404s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acs.biomac.7b00516 $2 doi
035    __
$a (PubMed)28475307
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Buzzacchera, Irene $u NovioSense B.V., Transistorweg 5, 6534 AT Nijmegen, The Netherlands.
245    10
$a Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings / $c I. Buzzacchera, M. Vorobii, NY. Kostina, A. de Los Santos Pereira, T. Riedel, M. Bruns, W. Ogieglo, M. Möller, CJ. Wilson, C. Rodriguez-Emmenegger,
520    9_
$a Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.
650    _2
$a biosenzitivní techniky $x metody $7 D015374
650    _2
$a trombocyty $x účinky léků $7 D001792
650    _2
$a buněčná adheze $x účinky léků $7 D002448
650    _2
$a chitosan $x chemie $7 D048271
650    _2
$a biokompatibilní potahované materiály $x chemie $x farmakologie $7 D020099
650    _2
$a volné radikály $7 D005609
650    _2
$a lidé $7 D006801
650    _2
$a hydrogely $x chemie $x farmakologie $7 D020100
650    _2
$a implantabilní infuzní pumpy $7 D015918
650    _2
$a leukocyty $x cytologie $x účinky léků $7 D007962
650    _2
$a methakryláty $x chemie $7 D008689
650    _2
$a aktivace trombocytů $x účinky léků $7 D015539
650    _2
$a polyethylenglykoly $x chemie $7 D011092
650    _2
$a polymerizace $7 D058105
650    _2
$a primární buněčná kultura $7 D061251
655    _2
$a časopisecké články $7 D016428
700    1_
$a Vorobii, Mariia $u DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany.
700    1_
$a Kostina, Nina Yu $u DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany.
700    1_
$a de Los Santos Pereira, Andres $u Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , v.v.i., Heyrovsky Square 2, 16206 Prague, Czech Republic.
700    1_
$a Riedel, Tomáš $u Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , v.v.i., Heyrovsky Square 2, 16206 Prague, Czech Republic.
700    1_
$a Bruns, Michael $u Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
700    1_
$a Ogieglo, Wojciech $u DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany.
700    1_
$a Möller, Martin $u DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany.
700    1_
$a Wilson, Christopher J $u NovioSense B.V., Transistorweg 5, 6534 AT Nijmegen, The Netherlands.
700    1_
$a Rodriguez-Emmenegger, Cesar $u DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany.
773    0_
$w MED00006456 $t Biomacromolecules $x 1526-4602 $g Roč. 18, č. 6 (2017), s. 1983-1992
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28475307 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180404 $b ABA008
991    __
$a 20180418140109 $b ABA008
999    __
$a ok $b bmc $g 1288081 $s 1007408
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 18 $c 6 $d 1983-1992 $e 20170512 $i 1526-4602 $m Biomacromolecules $n Biomacromolecules $x MED00006456
LZP    __
$a Pubmed-20180404

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...