-
Je něco špatně v tomto záznamu ?
Graptolite community responses to global climate change and the Late Ordovician mass extinction
HD. Sheets, CE. Mitchell, MJ. Melchin, J. Loxton, P. Štorch, KL. Carlucci, AD. Hawkins,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
NLK
Free Medical Journals
od 1915
Freely Accessible Science Journals
od 1915 do Před 6 měsíci
PubMed Central
od 1915 do Před 6 měsíci
Europe PubMed Central
od 1915 do Před 6 měsíci
Open Access Digital Library
od 1915-01-01
Open Access Digital Library
od 1915-01-15
PubMed
27432981
DOI
10.1073/pnas.1602102113
Knihovny.cz E-zdroje
- MeSH
- Bayesova věta MeSH
- bezobratlí klasifikace růst a vývoj MeSH
- biodiverzita MeSH
- biologické modely MeSH
- časové faktory MeSH
- extinkce biologická * MeSH
- geologické sedimenty MeSH
- klimatické změny * MeSH
- oceány a moře MeSH
- vodní organismy klasifikace růst a vývoj MeSH
- zkameněliny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- oceány a moře MeSH
Mass extinctions disrupt ecological communities. Although climate changes produce stress in ecological communities, few paleobiological studies have systematically addressed the impact of global climate changes on the fine details of community structure with a view to understanding how changes in community structure presage, or even cause, biodiversity decline during mass extinctions. Based on a novel Bayesian approach to biotope assessment, we present a study of changes in species abundance distribution patterns of macroplanktonic graptolite faunas (∼447-444 Ma) leading into the Late Ordovician mass extinction. Communities at two contrasting sites exhibit significant decreases in complexity and evenness as a consequence of the preferential decline in abundance of dysaerobic zone specialist species. The observed changes in community complexity and evenness commenced well before the dramatic population depletions that mark the tipping point of the extinction event. Initially, community changes tracked changes in the oceanic water masses, but these relations broke down during the onset of mass extinction. Environmental isotope and biomarker data suggest that sea surface temperature and nutrient cycling in the paleotropical oceans changed sharply during the latest Katian time, with consequent changes in the extent of the oxygen minimum zone and phytoplankton community composition. Although many impacted species persisted in ephemeral populations, increased extinction risk selectively depleted the diversity of paleotropical graptolite species during the latest Katian and early Hirnantian. The effects of long-term climate change on habitats can thus degrade populations in ways that cascade through communities, with effects that culminate in mass extinction.
Department of Earth Sciences Dalhousie University Halifax NS Canada B3H 4R2
Department of Earth Sciences St Francis Xavier University Antigonish NS Canada B2G 2W5
Department of Geology University at Buffalo The State University of New York Buffalo NY 14260
Department of Physics Canisius College Buffalo NY 14208
Institute of Geology The Czech Academy of Sciences 165 00 Prague 6 Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18011112
- 003
- CZ-PrNML
- 005
- 20180404142545.0
- 007
- ta
- 008
- 180404s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1073/pnas.1602102113 $2 doi
- 035 __
- $a (PubMed)27432981
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Sheets, H David $u Department of Physics, Canisius College, Buffalo, NY 14208; sheets@canisius.edu.
- 245 10
- $a Graptolite community responses to global climate change and the Late Ordovician mass extinction / $c HD. Sheets, CE. Mitchell, MJ. Melchin, J. Loxton, P. Štorch, KL. Carlucci, AD. Hawkins,
- 520 9_
- $a Mass extinctions disrupt ecological communities. Although climate changes produce stress in ecological communities, few paleobiological studies have systematically addressed the impact of global climate changes on the fine details of community structure with a view to understanding how changes in community structure presage, or even cause, biodiversity decline during mass extinctions. Based on a novel Bayesian approach to biotope assessment, we present a study of changes in species abundance distribution patterns of macroplanktonic graptolite faunas (∼447-444 Ma) leading into the Late Ordovician mass extinction. Communities at two contrasting sites exhibit significant decreases in complexity and evenness as a consequence of the preferential decline in abundance of dysaerobic zone specialist species. The observed changes in community complexity and evenness commenced well before the dramatic population depletions that mark the tipping point of the extinction event. Initially, community changes tracked changes in the oceanic water masses, but these relations broke down during the onset of mass extinction. Environmental isotope and biomarker data suggest that sea surface temperature and nutrient cycling in the paleotropical oceans changed sharply during the latest Katian time, with consequent changes in the extent of the oxygen minimum zone and phytoplankton community composition. Although many impacted species persisted in ephemeral populations, increased extinction risk selectively depleted the diversity of paleotropical graptolite species during the latest Katian and early Hirnantian. The effects of long-term climate change on habitats can thus degrade populations in ways that cascade through communities, with effects that culminate in mass extinction.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a vodní organismy $x klasifikace $x růst a vývoj $7 D059001
- 650 _2
- $a Bayesova věta $7 D001499
- 650 _2
- $a biodiverzita $7 D044822
- 650 12
- $a klimatické změny $7 D057231
- 650 12
- $a extinkce biologická $7 D053476
- 650 12
- $a zkameněliny $7 D005580
- 650 _2
- $a geologické sedimenty $7 D019015
- 650 _2
- $a bezobratlí $x klasifikace $x růst a vývoj $7 D007448
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a oceány a moře $7 D009792
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Mitchell, Charles E $u Department of Geology, University at Buffalo, The State University of New York, Buffalo, NY 14260;
- 700 1_
- $a Melchin, Michael J $u Department of Earth Sciences, St. Francis Xavier University, Antigonish, NS, Canada B2G 2W5;
- 700 1_
- $a Loxton, Jason $u Department of Earth Sciences, Dalhousie University, Halifax, NS, Canada B3H 4R2;
- 700 1_
- $a Štorch, Petr $u Institute of Geology, The Czech Academy of Sciences, 165 00 Prague 6, Czech Republic.
- 700 1_
- $a Carlucci, Kristi L $u Department of Geology, University at Buffalo, The State University of New York, Buffalo, NY 14260;
- 700 1_
- $a Hawkins, Andrew D $u Department of Geology, University at Buffalo, The State University of New York, Buffalo, NY 14260;
- 773 0_
- $w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 113, č. 30 (2016), s. 8380-5
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27432981 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180404 $b ABA008
- 991 __
- $a 20180404142625 $b ABA008
- 999 __
- $a ok $b bmc $g 1288597 $s 1007924
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 113 $c 30 $d 8380-5 $e 20160718 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
- LZP __
- $a Pubmed-20180404