-
Je něco špatně v tomto záznamu ?
Prostate-specific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide
RE. Conway, C. Rojas, J. Alt, Z. Nováková, SM. Richardson, TC. Rodrick, JL. Fuentes, NH. Richardson, J. Attalla, S. Stewart, B. Fahmy, C. Barinka, M. Ghosh, LH. Shapiro, BS. Slusher,
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články
NLK
ProQuest Central
od 1997-03-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-03-01 do Před 1 rokem
- MeSH
- angiogenní proteiny metabolismus MeSH
- antigeny CD29 metabolismus MeSH
- antigeny povrchové genetika metabolismus MeSH
- buněčná adheze MeSH
- dipeptidy metabolismus MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- endoteliální buňky cytologie metabolismus MeSH
- fyziologická neovaskularizace MeSH
- glutamátkarboxypeptidasa II genetika metabolismus MeSH
- hydrolýza MeSH
- laminin metabolismus MeSH
- lidé MeSH
- mutantní proteiny genetika metabolismus MeSH
- peptidové fragmenty metabolismus MeSH
- proteolýza MeSH
- substrátová specifita MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Prostate-specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase expressed in a number of tissues. PSMA participates in various biological functions depending on the substrate available in the particular tissue; in the brain, PSMA cleaves the abundant neuropeptide N-acetyl-aspartyl-glutamate to regulate release of key neurotransmitters, while intestinal PSMA cleaves polyglutamated peptides to supply dietary folate. PSMA expression is also progressively upregulated in prostate cancer where it correlates with tumor progression as well as in tumor vasculature, where it regulates angiogenesis. The previous research determined that PSMA cleavage of small peptides generated via matrix metalloprotease-mediated proteolysis of the extracellular matrix protein laminin potently activated endothelial cells, integrin signaling and angiogenesis, although the specific peptide substrates were not identified. Herein, using enzymatic analyses and LC/MS, we unequivocally demonstrate that several laminin-derived peptides containing carboxy-terminal glutamate moieties (LQE, IEE, LNE) are bona fide substrates for PSMA. Subsequently, the peptide products were tested for their effects on angiogenesis in various models. We report that LQ, the dipeptide product of PSMA cleavage of LQE, efficiently activates endothelial cells in vitro and enhances angiogenesis in vivo. Importantly, LQE is not cleaved by an inactive PSMA enzyme containing an active site mutation (E424S). Endothelial cell activation by LQ was dependent on integrin beta-1-induced activation of focal adhesion kinase. These results characterize a novel PSMA substrate, provide a functional rationale for the upregulation of PSMA in cancer cells and tumor vasculature and suggest that inhibition of PSMA could lead to the development of new angiogenic therapies.
Department of Biology College of Liberal Arts and Science Lipscomb University Nashville TN 37204 USA
Johns Hopkins Drug Discovery Johns Hopkins University Baltimore MD 21205 USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18011127
- 003
- CZ-PrNML
- 005
- 20180419102104.0
- 007
- ta
- 008
- 180404s2016 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s10456-016-9521-x $2 doi
- 035 __
- $a (PubMed)27387982
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Conway, Rebecca E $u Department of Biology, College of Liberal Arts and Science, Lipscomb University, Nashville, TN, 37204, USA.
- 245 10
- $a Prostate-specific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide / $c RE. Conway, C. Rojas, J. Alt, Z. Nováková, SM. Richardson, TC. Rodrick, JL. Fuentes, NH. Richardson, J. Attalla, S. Stewart, B. Fahmy, C. Barinka, M. Ghosh, LH. Shapiro, BS. Slusher,
- 520 9_
- $a Prostate-specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase expressed in a number of tissues. PSMA participates in various biological functions depending on the substrate available in the particular tissue; in the brain, PSMA cleaves the abundant neuropeptide N-acetyl-aspartyl-glutamate to regulate release of key neurotransmitters, while intestinal PSMA cleaves polyglutamated peptides to supply dietary folate. PSMA expression is also progressively upregulated in prostate cancer where it correlates with tumor progression as well as in tumor vasculature, where it regulates angiogenesis. The previous research determined that PSMA cleavage of small peptides generated via matrix metalloprotease-mediated proteolysis of the extracellular matrix protein laminin potently activated endothelial cells, integrin signaling and angiogenesis, although the specific peptide substrates were not identified. Herein, using enzymatic analyses and LC/MS, we unequivocally demonstrate that several laminin-derived peptides containing carboxy-terminal glutamate moieties (LQE, IEE, LNE) are bona fide substrates for PSMA. Subsequently, the peptide products were tested for their effects on angiogenesis in various models. We report that LQ, the dipeptide product of PSMA cleavage of LQE, efficiently activates endothelial cells in vitro and enhances angiogenesis in vivo. Importantly, LQE is not cleaved by an inactive PSMA enzyme containing an active site mutation (E424S). Endothelial cell activation by LQ was dependent on integrin beta-1-induced activation of focal adhesion kinase. These results characterize a novel PSMA substrate, provide a functional rationale for the upregulation of PSMA in cancer cells and tumor vasculature and suggest that inhibition of PSMA could lead to the development of new angiogenic therapies.
- 650 _2
- $a angiogenní proteiny $x metabolismus $7 D042501
- 650 _2
- $a antigeny povrchové $x genetika $x metabolismus $7 D000954
- 650 _2
- $a buněčná adheze $7 D002448
- 650 _2
- $a dipeptidy $x metabolismus $7 D004151
- 650 _2
- $a endoteliální buňky $x cytologie $x metabolismus $7 D042783
- 650 _2
- $a glutamátkarboxypeptidasa II $x genetika $x metabolismus $7 D043425
- 650 _2
- $a endoteliální buňky pupečníkové žíly (lidské) $7 D061307
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a hydrolýza $7 D006868
- 650 _2
- $a antigeny CD29 $x metabolismus $7 D019012
- 650 _2
- $a laminin $x metabolismus $7 D007797
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a mutantní proteiny $x genetika $x metabolismus $7 D050505
- 650 _2
- $a fyziologická neovaskularizace $7 D018919
- 650 _2
- $a peptidové fragmenty $x metabolismus $7 D010446
- 650 _2
- $a proteolýza $7 D059748
- 650 _2
- $a substrátová specifita $7 D013379
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Rojas, Camilo $u Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, 21205, USA. Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- 700 1_
- $a Alt, Jesse $u Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, 21205, USA.
- 700 1_
- $a Nováková, Zora $u Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, 25250, Vestec, Czech Republic.
- 700 1_
- $a Richardson, Spencer M $u Department of Biology, College of Liberal Arts and Science, Lipscomb University, Nashville, TN, 37204, USA.
- 700 1_
- $a Rodrick, Tori C $u Department of Biology, College of Liberal Arts and Science, Lipscomb University, Nashville, TN, 37204, USA.
- 700 1_
- $a Fuentes, Julio L $u Department of Biology, College of Liberal Arts and Science, Lipscomb University, Nashville, TN, 37204, USA.
- 700 1_
- $a Richardson, Noah H $u Department of Biology, College of Liberal Arts and Science, Lipscomb University, Nashville, TN, 37204, USA.
- 700 1_
- $a Attalla, Jonathan $u Department of Biology, College of Liberal Arts and Science, Lipscomb University, Nashville, TN, 37204, USA.
- 700 1_
- $a Stewart, Samantha $u Department of Biology, College of Liberal Arts and Science, Lipscomb University, Nashville, TN, 37204, USA.
- 700 1_
- $a Fahmy, Beshoy $u Department of Biology, College of Liberal Arts and Science, Lipscomb University, Nashville, TN, 37204, USA.
- 700 1_
- $a Barinka, Cyril $u Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, 25250, Vestec, Czech Republic.
- 700 1_
- $a Ghosh, Mallika $u Center for Vascular Biology, The University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
- 700 1_
- $a Shapiro, Linda H $u Center for Vascular Biology, The University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA. lshapiro@uchc.edu.
- 700 1_
- $a Slusher, Barbara S $u Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, 21205, USA. bslusher@jhmi.edu. Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA. bslusher@jhmi.edu.
- 773 0_
- $w MED00007544 $t Angiogenesis $x 1573-7209 $g Roč. 19, č. 4 (2016), s. 487-500
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27387982 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180404 $b ABA008
- 991 __
- $a 20180419102205 $b ABA008
- 999 __
- $a ok $b bmc $g 1288612 $s 1007939
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 19 $c 4 $d 487-500 $e 20160708 $i 1573-7209 $m Angiogenesis $n Angiogenesis $x MED00007544
- LZP __
- $a Pubmed-20180404