• Je něco špatně v tomto záznamu ?

Impedance Rhythms in Human Limbic System

F. Mivalt, V. Kremen, V. Sladky, J. Cui, NM. Gregg, I. Balzekas, V. Marks, EK. St Louis, P. Croarkin, BN. Lundstrom, N. Nelson, J. Kim, D. Hermes, S. Messina, S. Worrell, T. Richner, BH. Brinkmann, T. Denison, KJ. Miller, J. Van Gompel, M. Stead,...

. 2023 ; 43 (39) : 6653-6666. [pub] 20230824

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/bmc24001218

Grantová podpora
UH2 NS095495 NINDS NIH HHS - United States
R01 MH122258 NIMH NIH HHS - United States
U24 NS113637 NINDS NIH HHS - United States
R01 NS112144 NINDS NIH HHS - United States
UH3 NS095495 NINDS NIH HHS - United States
R01 NS092882 NINDS NIH HHS - United States

The impedance is a fundamental electrical property of brain tissue, playing a crucial role in shaping the characteristics of local field potentials, the extent of ephaptic coupling, and the volume of tissue activated by externally applied electrical brain stimulation. We tracked brain impedance, sleep-wake behavioral state, and epileptiform activity in five people with epilepsy living in their natural environment using an investigational device. The study identified impedance oscillations that span hours to weeks in the amygdala, hippocampus, and anterior nucleus thalamus. The impedance in these limbic brain regions exhibit multiscale cycles with ultradian (∼1.5-1.7 h), circadian (∼21.6-26.4 h), and infradian (∼20-33 d) periods. The ultradian and circadian period cycles are driven by sleep-wake state transitions between wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Limbic brain tissue impedance reaches a minimum value in NREM sleep, intermediate values in REM sleep, and rises through the day during wakefulness, reaching a maximum in the early evening before sleep onset. Infradian (∼20-33 d) impedance cycles were not associated with a distinct behavioral correlate. Brain tissue impedance is known to strongly depend on the extracellular space (ECS) volume, and the findings reported here are consistent with sleep-wake-dependent ECS volume changes recently observed in the rodent cortex related to the brain glymphatic system. We hypothesize that human limbic brain ECS changes during sleep-wake state transitions underlie the observed multiscale impedance cycles. Impedance is a simple electrophysiological biomarker that could prove useful for tracking ECS dynamics in human health, disease, and therapy.SIGNIFICANCE STATEMENT The electrical impedance in limbic brain structures (amygdala, hippocampus, anterior nucleus thalamus) is shown to exhibit oscillations over multiple timescales. We observe that impedance oscillations with ultradian and circadian periodicities are associated with transitions between wakefulness, NREM, and REM sleep states. There are also impedance oscillations spanning multiple weeks that do not have a clear behavioral correlate and whose origin remains unclear. These multiscale impedance oscillations will have an impact on extracellular ionic currents that give rise to local field potentials, ephaptic coupling, and the tissue activated by electrical brain stimulation. The approach for measuring tissue impedance using perturbational electrical currents is an established engineering technique that may be useful for tracking ECS volume.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24001218
003      
CZ-PrNML
005      
20240213094440.0
007      
ta
008      
240109s2023 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1523/JNEUROSCI.0241-23.2023 $2 doi
035    __
$a (PubMed)37620157
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Mivalt, Filip $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905 $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, 61600 Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, 60200 Brno, Czech Republic $1 https://orcid.org/0000000206939495
245    10
$a Impedance Rhythms in Human Limbic System / $c F. Mivalt, V. Kremen, V. Sladky, J. Cui, NM. Gregg, I. Balzekas, V. Marks, EK. St Louis, P. Croarkin, BN. Lundstrom, N. Nelson, J. Kim, D. Hermes, S. Messina, S. Worrell, T. Richner, BH. Brinkmann, T. Denison, KJ. Miller, J. Van Gompel, M. Stead, GA. Worrell
520    9_
$a The impedance is a fundamental electrical property of brain tissue, playing a crucial role in shaping the characteristics of local field potentials, the extent of ephaptic coupling, and the volume of tissue activated by externally applied electrical brain stimulation. We tracked brain impedance, sleep-wake behavioral state, and epileptiform activity in five people with epilepsy living in their natural environment using an investigational device. The study identified impedance oscillations that span hours to weeks in the amygdala, hippocampus, and anterior nucleus thalamus. The impedance in these limbic brain regions exhibit multiscale cycles with ultradian (∼1.5-1.7 h), circadian (∼21.6-26.4 h), and infradian (∼20-33 d) periods. The ultradian and circadian period cycles are driven by sleep-wake state transitions between wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Limbic brain tissue impedance reaches a minimum value in NREM sleep, intermediate values in REM sleep, and rises through the day during wakefulness, reaching a maximum in the early evening before sleep onset. Infradian (∼20-33 d) impedance cycles were not associated with a distinct behavioral correlate. Brain tissue impedance is known to strongly depend on the extracellular space (ECS) volume, and the findings reported here are consistent with sleep-wake-dependent ECS volume changes recently observed in the rodent cortex related to the brain glymphatic system. We hypothesize that human limbic brain ECS changes during sleep-wake state transitions underlie the observed multiscale impedance cycles. Impedance is a simple electrophysiological biomarker that could prove useful for tracking ECS dynamics in human health, disease, and therapy.SIGNIFICANCE STATEMENT The electrical impedance in limbic brain structures (amygdala, hippocampus, anterior nucleus thalamus) is shown to exhibit oscillations over multiple timescales. We observe that impedance oscillations with ultradian and circadian periodicities are associated with transitions between wakefulness, NREM, and REM sleep states. There are also impedance oscillations spanning multiple weeks that do not have a clear behavioral correlate and whose origin remains unclear. These multiscale impedance oscillations will have an impact on extracellular ionic currents that give rise to local field potentials, ephaptic coupling, and the tissue activated by electrical brain stimulation. The approach for measuring tissue impedance using perturbational electrical currents is an established engineering technique that may be useful for tracking ECS volume.
650    _2
$a lidé $7 D006801
650    _2
$a elektrická impedance $7 D017097
650    12
$a spánek $x fyziologie $7 D012890
650    12
$a spánek REM $x fyziologie $7 D012895
650    _2
$a mozek $x fyziologie $7 D001921
650    _2
$a bdění $x fyziologie $7 D014851
650    _2
$a hipokampus $7 D006624
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
700    1_
$a Kremen, Vaclav $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905 $u Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University, 16000 Prague, Czech Republic $1 https://orcid.org/0000000198447617
700    1_
$a Sladky, Vladimir $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905 $u International Clinical Research Center, St. Anne's University Hospital, 60200 Brno, Czech Republic $u Faculty of Biomedical Engineering, Czech Technical University, 16000 Prague, Czech Republic
700    1_
$a Cui, Jie $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905
700    1_
$a Gregg, Nicholas M $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905
700    1_
$a Balzekas, Irena $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905 $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905
700    1_
$a Marks, Victoria $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905 $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905
700    1_
$a St Louis, Erik K $u Center for Sleep Medicine, Departments of Neurology and Medicine, Divisions of Sleep Neurology and Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota 55905
700    1_
$a Croarkin, Paul $u Departments of Psychiatry and Psychology and $1 https://orcid.org/0000000168436503
700    1_
$a Lundstrom, Brian Nils $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905
700    1_
$a Nelson, Noelle $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905
700    1_
$a Kim, Jiwon $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905
700    1_
$a Hermes, Dora $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905 $1 https://orcid.org/0000000286838909
700    1_
$a Messina, Steven $u Department of Radiology, Mayo Clinic Rochester, Minnesota 55905
700    1_
$a Worrell, Samuel $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905
700    1_
$a Richner, Thomas $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905
700    1_
$a Brinkmann, Benjamin H $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905 $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905
700    1_
$a Denison, Timothy $u Department of Engineering Science, Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford OX3 7DQ, United Kingdom
700    1_
$a Miller, Kai J $u Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905
700    1_
$a Van Gompel, Jamie $u Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905
700    1_
$a Stead, Matthew $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905
700    1_
$a Worrell, Gregory A $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905 worrell.gregory@mayo.edu $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905 $1 https://orcid.org/0000000329160553
773    0_
$w MED00002840 $t The Journal of neuroscience $x 1529-2401 $g Roč. 43, č. 39 (2023), s. 6653-6666
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37620157 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240109 $b ABA008
991    __
$a 20240213094437 $b ABA008
999    __
$a ok $b bmc $g 2049684 $s 1210912
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 43 $c 39 $d 6653-6666 $e 20230824 $i 1529-2401 $m The Journal of neuroscience $n J Neurosci $x MED00002840
GRA    __
$a UH2 NS095495 $p NINDS NIH HHS $2 United States
GRA    __
$a R01 MH122258 $p NIMH NIH HHS $2 United States
GRA    __
$a U24 NS113637 $p NINDS NIH HHS $2 United States
GRA    __
$a R01 NS112144 $p NINDS NIH HHS $2 United States
GRA    __
$a UH3 NS095495 $p NINDS NIH HHS $2 United States
GRA    __
$a R01 NS092882 $p NINDS NIH HHS $2 United States
LZP    __
$a Pubmed-20240109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...