Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Combining clinical and magnetic resonance imaging markers enhances prediction of 12-year disability in multiple sclerosis

T. Uher, M. Vaneckova, L. Sobisek, M. Tyblova, Z. Seidl, J. Krasensky, D. Ramasamy, R. Zivadinov, E. Havrdova, T. Kalincik, D. Horakova,

. 2017 ; 23 (1) : 51-61. [pub] 20160711

Language English Country Great Britain

Document type Journal Article

Grant support
NT12385 MZ0 CEP Register
NT13237 MZ0 CEP Register

BACKGROUND: Disease progression and treatment efficacy vary among individuals with multiple sclerosis. Reliable predictors of individual disease outcomes are lacking. OBJECTIVE: To examine the accuracy of the early prediction of 12-year disability outcomes using clinical and magnetic resonance imaging (MRI) parameters. METHODS: A total of 177 patients from the original Avonex-Steroids-Azathioprine study were included. Participants underwent 3-month clinical follow-ups. Cox models were used to model the associations between clinical and MRI markers at baseline or after 12 months with sustained disability progression (SDP) over the 12-year observation period. RESULTS: At baseline, T2 lesion number, T1 and T2 lesion volumes, corpus callosum (CC), and thalamic fraction were the best predictors of SDP (hazard ratio (HR) = 1.7-4.6; p ⩽ 0.001-0.012). At 12 months, Expanded Disability Status Scale (EDSS) and its change, number of new or enlarging T2 lesions, and CC volume % change were the best predictors of SDP over the follow-up (HR = 1.7-3.5; p ⩽  0.001-0.017). A composite score was generated from a subset of the best predictors of SDP. Scores of ⩾4 had greater specificity (90%-100%) and were associated with greater cumulative risk of SDP (HR = 3.2-21.6; p < 0.001) compared to the individual predictors. CONCLUSION: The combination of established MRI and clinical indices with MRI volumetric predictors improves the prediction of SDP over long-term follow-up and may provide valuable information for therapeutic decisions.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18011268
003      
CZ-PrNML
005      
20181024090323.0
007      
ta
008      
180404s2017 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1177/1352458516642314 $2 doi
035    __
$a (PubMed)27053635
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Uher, Tomáš $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic. $7 xx0189534
245    10
$a Combining clinical and magnetic resonance imaging markers enhances prediction of 12-year disability in multiple sclerosis / $c T. Uher, M. Vaneckova, L. Sobisek, M. Tyblova, Z. Seidl, J. Krasensky, D. Ramasamy, R. Zivadinov, E. Havrdova, T. Kalincik, D. Horakova,
520    9_
$a BACKGROUND: Disease progression and treatment efficacy vary among individuals with multiple sclerosis. Reliable predictors of individual disease outcomes are lacking. OBJECTIVE: To examine the accuracy of the early prediction of 12-year disability outcomes using clinical and magnetic resonance imaging (MRI) parameters. METHODS: A total of 177 patients from the original Avonex-Steroids-Azathioprine study were included. Participants underwent 3-month clinical follow-ups. Cox models were used to model the associations between clinical and MRI markers at baseline or after 12 months with sustained disability progression (SDP) over the 12-year observation period. RESULTS: At baseline, T2 lesion number, T1 and T2 lesion volumes, corpus callosum (CC), and thalamic fraction were the best predictors of SDP (hazard ratio (HR) = 1.7-4.6; p ⩽ 0.001-0.012). At 12 months, Expanded Disability Status Scale (EDSS) and its change, number of new or enlarging T2 lesions, and CC volume % change were the best predictors of SDP over the follow-up (HR = 1.7-3.5; p ⩽  0.001-0.017). A composite score was generated from a subset of the best predictors of SDP. Scores of ⩾4 had greater specificity (90%-100%) and were associated with greater cumulative risk of SDP (HR = 3.2-21.6; p < 0.001) compared to the individual predictors. CONCLUSION: The combination of established MRI and clinical indices with MRI volumetric predictors improves the prediction of SDP over long-term follow-up and may provide valuable information for therapeutic decisions.
650    _2
$a dospělí $7 D000328
650    _2
$a atrofie $7 D001284
650    _2
$a biologické markery $x analýza $7 D015415
650    _2
$a mozek $x diagnostické zobrazování $7 D001921
650    _2
$a posuzování pracovní neschopnosti $7 D004185
650    _2
$a progrese nemoci $7 D018450
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a následné studie $7 D005500
650    _2
$a lidé $7 D006801
650    _2
$a interferon beta 1a $x terapeutické užití $7 D000068556
650    12
$a magnetická rezonanční tomografie $x metody $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a roztroušená skleróza $x diagnostické zobrazování $x farmakoterapie $x patologie $7 D009103
650    _2
$a prediktivní hodnota testů $7 D011237
655    _2
$a časopisecké články $7 D016428
700    1_
$a Vaněčková, Manuela, $u Department of Radiology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic. $d 1973- $7 mzk2007377403
700    1_
$a Sobisek, Lukas $u Department of Statistics and Probability, University of Economics, Prague, Czech Republic.
700    1_
$a Týblová, Michaela $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic. $7 xx0121850
700    1_
$a Seidl, Zdeněk, $u Department of Radiology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic. $d 1950- $7 mzk2004258727
700    1_
$a Krásenský, Jan $u Department of Radiology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic. $7 xx0096156
700    1_
$a Ramasamy, Deepa $u Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
700    1_
$a Zivadinov, Robert $u Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA/MR Imaging Clinical Translational Research Center, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
700    1_
$a Kubala Havrdová, Eva, $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic. $d 1955- $7 nlk19990073204
700    1_
$a Kalincik, Tomas $u Department of Medicine, University of Melbourne, Melbourne, VIC, Australia/Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia.
700    1_
$a Horáková, Dana $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic. $7 xx0076527
773    0_
$w MED00006389 $t Multiple sclerosis (Houndmills, Basingstoke, England) $x 1477-0970 $g Roč. 23, č. 1 (2017), s. 51-61
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27053635 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180404 $b ABA008
991    __
$a 20181024090831 $b ABA008
999    __
$a ok $b bmc $g 1288753 $s 1008080
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 23 $c 1 $d 51-61 $e 20160711 $i 1477-0970 $m Multiple sclerosis $n Mult Scler $x MED00006389
GRA    __
$a NT12385 $p MZ0
GRA    __
$a NT13237 $p MZ0
LZP    __
$a Pubmed-20180404

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...