• Something wrong with this record ?

Spectral density mapping at multiple magnetic fields suitable for (13)C NMR relaxation studies

P. Kadeřávek, V. Zapletal, R. Fiala, P. Srb, P. Padrta, JP. Přecechtělová, M. Šoltésová, J. Kowalewski, G. Widmalm, J. Chmelík, V. Sklenář, L. Žídek,

. 2016 ; 266 (-) : 23-40. [pub] 20160308

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Standard spectral density mapping protocols, well suited for the analysis of (15)N relaxation rates, introduce significant systematic errors when applied to (13)C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and (13)C frequencies can be obtained from data acquired at three magnetic fields for uniformly (13)C-labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18011277
003      
CZ-PrNML
005      
20180416105500.0
007      
ta
008      
180404s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jmr.2016.02.016 $2 doi
035    __
$a (PubMed)27003380
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kadeřávek, Pavel $u National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Institute of Biophysics of Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic. Electronic address: kada@chemi.muni.cz.
245    10
$a Spectral density mapping at multiple magnetic fields suitable for (13)C NMR relaxation studies / $c P. Kadeřávek, V. Zapletal, R. Fiala, P. Srb, P. Padrta, JP. Přecechtělová, M. Šoltésová, J. Kowalewski, G. Widmalm, J. Chmelík, V. Sklenář, L. Žídek,
520    9_
$a Standard spectral density mapping protocols, well suited for the analysis of (15)N relaxation rates, introduce significant systematic errors when applied to (13)C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and (13)C frequencies can be obtained from data acquired at three magnetic fields for uniformly (13)C-labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.
650    12
$a algoritmy $7 D000465
650    _2
$a magnetická rezonanční spektroskopie s uhlíkem 13C $x metody $7 D066241
650    12
$a interpretace statistických dat $7 D003627
650    _2
$a magnetické pole $7 D060526
650    _2
$a malá interferující RNA $x analýza $x chemie $7 D034741
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a senzitivita a specificita $7 D012680
650    12
$a počítačové zpracování signálu $7 D012815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Zapletal, Vojtěch $u National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. Electronic address: vojtis@mail.muni.cz.
700    1_
$a Fiala, Radovan $u National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. Electronic address: fiala@chemi.muni.cz.
700    1_
$a Srb, Pavel $u Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. Electronic address: pavel.srb@gmail.com.
700    1_
$a Padrta, Petr $u Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. Electronic address: padrta@chemi.muni.cz.
700    1_
$a Přecechtělová, Jana Pavlíková $u Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. Electronic address: j.precechtelova@gmail.com.
700    1_
$a Šoltésová, Mária $u Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, CZ-180 00 Prague, Czech Republic. Electronic address: maria.soltesova@gmail.com.
700    1_
$a Kowalewski, Jozef $u Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden. Electronic address: jozef.kowalewski@mmk.su.se.
700    1_
$a Widmalm, Göran $u Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden. Electronic address: gw@organ.su.se.
700    1_
$a Chmelík, Josef $u Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 00 Prague 4 - Krč, Czech Republic. Electronic address: chmelik@biomed.cas.cz.
700    1_
$a Sklenář, Vladimír $u National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. Electronic address: sklenar@chemi.muni.cz.
700    1_
$a Žídek, Lukáš $u National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. Electronic address: lzidek@chemi.muni.cz.
773    0_
$w MED00005266 $t Journal of magnetic resonance $x 1096-0856 $g Roč. 266, č. - (2016), s. 23-40
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27003380 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180404 $b ABA008
991    __
$a 20180416105557 $b ABA008
999    __
$a ok $b bmc $g 1288762 $s 1008089
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 266 $c - $d 23-40 $e 20160308 $i 1096-0856 $m Journal of magnetic resonance $n J Magn Reson $x MED00005266
LZP    __
$a Pubmed-20180404

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...