Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Effects of ignoring clustered data structure in confirmatory factor analysis of ordered polytomous items: a simulation study based on PANSS

J. Stochl, PB. Jones, J. Perez, GM. Khandaker, JR. Böhnke, TJ. Croudace,

. 2016 ; 25 (3) : 205-19. [pub] 20150620

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Statistical theory indicates that hierarchical clustering by interviewers or raters needs to be considered to avoid incorrect inferences when performing any analyses including regression, factor analysis (FA) or item response theory (IRT) modelling of binary or ordinal data. We use simulated Positive and Negative Syndrome Scale (PANSS) data to show the consequences (in terms of bias, variance and mean square error) of using an analysis ignoring clustering on confirmatory factor analysis (CFA) estimates. Our investigation includes the performance of different estimators, such as maximum likelihood, weighted least squares and Markov Chain Monte Carlo (MCMC). Our simulation results suggest that ignoring clustering may lead to serious bias of the estimated factor loadings, item thresholds, and corresponding standard errors in CFAs for ordinal item response data typical of that commonly encountered in psychiatric research. In addition, fit indices tend to show a poor fit for the hypothesized structural model. MCMC estimation may be more robust against clustering than maximum likelihood and weighted least squares approaches but further investigation of these issues is warranted in future simulation studies of other datasets. Copyright © 2015 John Wiley & Sons, Ltd.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18011349
003      
CZ-PrNML
005      
20180419085900.0
007      
ta
008      
180404s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/mpr.1474 $2 doi
035    __
$a (PubMed)26096674
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Stochl, Jan $u Department of Psychiatry, University of Cambridge, Cambridge, UK. jan.stochl@york.ac.uk. Mental Health and Addiction Research Group (MHARG), Department of Health Sciences, University of York, York, UK. jan.stochl@york.ac.uk. Department of Kinanthropology, Charles University in Prague, Prague, Czech Republic. jan.stochl@york.ac.uk.
245    10
$a Effects of ignoring clustered data structure in confirmatory factor analysis of ordered polytomous items: a simulation study based on PANSS / $c J. Stochl, PB. Jones, J. Perez, GM. Khandaker, JR. Böhnke, TJ. Croudace,
520    9_
$a Statistical theory indicates that hierarchical clustering by interviewers or raters needs to be considered to avoid incorrect inferences when performing any analyses including regression, factor analysis (FA) or item response theory (IRT) modelling of binary or ordinal data. We use simulated Positive and Negative Syndrome Scale (PANSS) data to show the consequences (in terms of bias, variance and mean square error) of using an analysis ignoring clustering on confirmatory factor analysis (CFA) estimates. Our investigation includes the performance of different estimators, such as maximum likelihood, weighted least squares and Markov Chain Monte Carlo (MCMC). Our simulation results suggest that ignoring clustering may lead to serious bias of the estimated factor loadings, item thresholds, and corresponding standard errors in CFAs for ordinal item response data typical of that commonly encountered in psychiatric research. In addition, fit indices tend to show a poor fit for the hypothesized structural model. MCMC estimation may be more robust against clustering than maximum likelihood and weighted least squares approaches but further investigation of these issues is warranted in future simulation studies of other datasets. Copyright © 2015 John Wiley & Sons, Ltd.
650    _2
$a počítačová simulace $7 D003198
650    12
$a interpretace statistických dat $7 D003627
650    12
$a faktorová analýza statistická $7 D005163
650    _2
$a lidé $7 D006801
650    _2
$a psychiatrické posuzovací škály $x statistika a číselné údaje $7 D011569
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Jones, Peter B $u Department of Psychiatry, University of Cambridge, Cambridge, UK.
700    1_
$a Perez, Jesus $u Department of Psychiatry, University of Cambridge, Cambridge, UK.
700    1_
$a Khandaker, Golam M $u Department of Psychiatry, University of Cambridge, Cambridge, UK.
700    1_
$a Böhnke, Jan R $u Mental Health and Addiction Research Group (MHARG), Department of Health Sciences, University of York, York, UK. Hull York Medical School (HYMS), University of York, York, UK.
700    1_
$a Croudace, Tim J $u Department of Psychiatry, University of Cambridge, Cambridge, UK. Social Dimensions of Health Institute and School of Nursing and Midwifery, University of Dundee, Dundee, UK.
773    0_
$w MED00007982 $t International journal of methods in psychiatric research $x 1557-0657 $g Roč. 25, č. 3 (2016), s. 205-19
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26096674 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180404 $b ABA008
991    __
$a 20180419090001 $b ABA008
999    __
$a ok $b bmc $g 1288834 $s 1008161
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 25 $c 3 $d 205-19 $e 20150620 $i 1557-0657 $m International journal of methods in psychiatric research $n Int J Methods Psychiatr Res $x MED00007982
LZP    __
$a Pubmed-20180404

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...