Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Hierarchical patterning modes orchestrate hair follicle morphogenesis

JD. Glover, KL. Wells, F. Matthäus, KJ. Painter, W. Ho, J. Riddell, JA. Johansson, MJ. Ford, CAB. Jahoda, V. Klika, RL. Mort, DJ. Headon,

. 2017 ; 15 (7) : e2002117. [pub] 20170711

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18016490

Two theories address the origin of repeating patterns, such as hair follicles, limb digits, and intestinal villi, during development. The Turing reaction-diffusion system posits that interacting diffusible signals produced by static cells first define a prepattern that then induces cell rearrangements to produce an anatomical structure. The second theory, that of mesenchymal self-organisation, proposes that mobile cells can form periodic patterns of cell aggregates directly, without reference to any prepattern. Early hair follicle development is characterised by the rapid appearance of periodic arrangements of altered gene expression in the epidermis and prominent clustering of the adjacent dermal mesenchymal cells. We assess the contributions and interplay between reaction-diffusion and mesenchymal self-organisation processes in hair follicle patterning, identifying a network of fibroblast growth factor (FGF), wingless-related integration site (WNT), and bone morphogenetic protein (BMP) signalling interactions capable of spontaneously producing a periodic pattern. Using time-lapse imaging, we find that mesenchymal cell condensation at hair follicles is locally directed by an epidermal prepattern. However, imposing this prepattern's condition of high FGF and low BMP activity across the entire skin reveals a latent dermal capacity to undergo spatially patterned self-organisation in the absence of epithelial direction. This mesenchymal self-organisation relies on restricted transforming growth factor (TGF) β signalling, which serves to drive chemotactic mesenchymal patterning when reaction-diffusion patterning is suppressed, but, in normal conditions, facilitates cell movement to locally prepatterned sources of FGF. This work illustrates a hierarchy of periodic patterning modes operating in organogenesis.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18016490
003      
CZ-PrNML
005      
20180518095809.0
007      
ta
008      
180515s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pbio.2002117 $2 doi
035    __
$a (PubMed)28700594
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Glover, James D $u The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
245    10
$a Hierarchical patterning modes orchestrate hair follicle morphogenesis / $c JD. Glover, KL. Wells, F. Matthäus, KJ. Painter, W. Ho, J. Riddell, JA. Johansson, MJ. Ford, CAB. Jahoda, V. Klika, RL. Mort, DJ. Headon,
520    9_
$a Two theories address the origin of repeating patterns, such as hair follicles, limb digits, and intestinal villi, during development. The Turing reaction-diffusion system posits that interacting diffusible signals produced by static cells first define a prepattern that then induces cell rearrangements to produce an anatomical structure. The second theory, that of mesenchymal self-organisation, proposes that mobile cells can form periodic patterns of cell aggregates directly, without reference to any prepattern. Early hair follicle development is characterised by the rapid appearance of periodic arrangements of altered gene expression in the epidermis and prominent clustering of the adjacent dermal mesenchymal cells. We assess the contributions and interplay between reaction-diffusion and mesenchymal self-organisation processes in hair follicle patterning, identifying a network of fibroblast growth factor (FGF), wingless-related integration site (WNT), and bone morphogenetic protein (BMP) signalling interactions capable of spontaneously producing a periodic pattern. Using time-lapse imaging, we find that mesenchymal cell condensation at hair follicles is locally directed by an epidermal prepattern. However, imposing this prepattern's condition of high FGF and low BMP activity across the entire skin reveals a latent dermal capacity to undergo spatially patterned self-organisation in the absence of epithelial direction. This mesenchymal self-organisation relies on restricted transforming growth factor (TGF) β signalling, which serves to drive chemotactic mesenchymal patterning when reaction-diffusion patterning is suppressed, but, in normal conditions, facilitates cell movement to locally prepatterned sources of FGF. This work illustrates a hierarchy of periodic patterning modes operating in organogenesis.
650    _2
$a zvířata $7 D000818
650    _2
$a rozvržení tělního plánu $7 D019521
650    _2
$a buněčná diferenciace $7 D002454
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a stanovení celkové genové exprese $7 D020869
650    _2
$a vlasový folikul $x embryologie $7 D018859
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a myši $7 D051379
650    _2
$a inbrední kmeny myší $7 D008815
650    _2
$a signální transdukce $7 D015398
650    _2
$a kůže $x cytologie $x embryologie $x metabolismus $7 D012867
650    _2
$a transformující růstový faktor beta $x metabolismus $x fyziologie $7 D016212
655    _2
$a časopisecké články $7 D016428
700    1_
$a Wells, Kirsty L $u The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
700    1_
$a Matthäus, Franziska $u FIAS and Faculty of Biological Sciences, University of Frankfurt, Germany.
700    1_
$a Painter, Kevin J $u School of Mathematical & Computer Sciences, Heriot-Watt University, Edinburgh, United Kingdom.
700    1_
$a Ho, William $u The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
700    1_
$a Riddell, Jon $u The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
700    1_
$a Johansson, Jeanette A $u The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom. Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.
700    1_
$a Ford, Matthew J $u Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.
700    1_
$a Jahoda, Colin A B $u School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom.
700    1_
$a Klika, Vaclav $u Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic.
700    1_
$a Mort, Richard L $u Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, Lancaster, United Kingdom.
700    1_
$a Headon, Denis J $u The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
773    0_
$w MED00008061 $t PLoS biology $x 1545-7885 $g Roč. 15, č. 7 (2017), s. e2002117
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28700594 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180515 $b ABA008
991    __
$a 20180518095947 $b ABA008
999    __
$a ok $b bmc $g 1300114 $s 1013330
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 15 $c 7 $d e2002117 $e 20170711 $i 1545-7885 $m PLoS biology $n Plos Biol $x MED00008061
LZP    __
$a Pubmed-20180515

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...