• Je něco špatně v tomto záznamu ?

A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants

T. Čermák, SJ. Curtin, J. Gil-Humanes, R. Čegan, TJY. Kono, E. Konečná, JJ. Belanto, CG. Starker, JW. Mathre, RL. Greenstein, DF. Voytas,

. 2017 ; 29 (6) : 1196-1217. [pub] 20170518

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18016598

We report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A Web-based tool streamlines vector selection and construction. One advantage of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 (Csy4) and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing 12 gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare).

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18016598
003      
CZ-PrNML
005      
20180515103643.0
007      
ta
008      
180515s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1105/tpc.16.00922 $2 doi
035    __
$a (PubMed)28522548
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Čermák, Tomáš $u Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455.
245    12
$a A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants / $c T. Čermák, SJ. Curtin, J. Gil-Humanes, R. Čegan, TJY. Kono, E. Konečná, JJ. Belanto, CG. Starker, JW. Mathre, RL. Greenstein, DF. Voytas,
520    9_
$a We report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A Web-based tool streamlines vector selection and construction. One advantage of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 (Csy4) and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing 12 gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare).
650    _2
$a sekvence CRISPR $x genetika $7 D064112
650    _2
$a genetické inženýrství $x metody $7 D005818
650    _2
$a ječmen (rod) $x genetika $7 D001467
650    _2
$a Solanum lycopersicum $x genetika $7 D018551
650    _2
$a rostlinné proteiny $x genetika $7 D010940
650    _2
$a geneticky modifikované rostliny $x genetika $7 D030821
650    _2
$a RNA rostlin $x genetika $7 D018749
650    _2
$a TALENs $x genetika $7 D000069896
650    _2
$a pšenice $x genetika $7 D014908
655    _2
$a časopisecké články $7 D016428
700    1_
$a Curtin, Shaun J $u Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108. Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108.
700    1_
$a Gil-Humanes, Javier $u Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455.
700    1_
$a Čegan, Radim $u Department of Plant Developmental Genetics, Institute of Biophysics of the CAS, CZ-61265 Brno, Czech Republic.
700    1_
$a Kono, Thomas J Y $u Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108.
700    1_
$a Konečná, Eva $u Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455.
700    1_
$a Belanto, Joseph J $u Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455.
700    1_
$a Starker, Colby G $u Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455.
700    1_
$a Mathre, Jade W $u Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455.
700    1_
$a Greenstein, Rebecca L $u Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455.
700    1_
$a Voytas, Daniel F $u Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 voytas@umn.edu.
773    0_
$w MED00005315 $t The Plant cell $x 1532-298X $g Roč. 29, č. 6 (2017), s. 1196-1217
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28522548 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180515 $b ABA008
991    __
$a 20180515103816 $b ABA008
999    __
$a ok $b bmc $g 1300222 $s 1013438
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 29 $c 6 $d 1196-1217 $e 20170518 $i 1532-298X $m The Plant cell $n Plant Cell $x MED00005315
LZP    __
$a Pubmed-20180515

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace