-
Je něco špatně v tomto záznamu ?
Effects of Membrane PEGylation on Entry and Location of Antifungal Drug Itraconazole and Their Pharmacological Implications
M. Dzieciuch-Rojek, C. Poojari, J. Bednar, A. Bunker, B. Kozik, M. Nowakowska, I. Vattulainen, P. Wydro, M. Kepczynski, T. Róg,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
- MeSH
- antifungální látky chemie MeSH
- chemie farmaceutická metody MeSH
- fluorescence MeSH
- fosfatidylcholiny chemie MeSH
- itrakonazol chemie MeSH
- lipidové dvojvrstvy chemie MeSH
- liposomy chemie MeSH
- membrány chemie MeSH
- ochranné látky chemie MeSH
- polyethylenglykoly chemie MeSH
- polymery chemie MeSH
- povrchové vlastnosti MeSH
- rozpustnost MeSH
- systémy cílené aplikace léků metody MeSH
- Publikační typ
- časopisecké články MeSH
Itraconazole (ITZ) is an antifungal agent used clinically to treat mycotic infections. However, its therapeutic effects are limited by low solubility in aqueous media. Liposome-based delivery systems (LDS) have been proposed as a delivery mechanism for ITZ to alleviate this problem. Furthermore, PEGylation, the inclusion in the formulation of a protective "stealth sheath" of poly(ethylene glycol) around carrier particles, is widely used to increase circulation time in the bloodstream and hence efficacy. Together, these themes highlight the importance of mechanistic and structural understanding of ITZ incorporation into liposomes both with and without PEGylation because it can provide a potential foundation for the rational design of LDS-based systems for delivery of ITZ, using alternate protective polymers or formulations. Here we have combined atomistic simulations, cryo-TEM, Langmuir film balance, and fluorescence quenching experiments to explore how ITZ interacts with both pristine and PEGylated liposomes. We found that the drug can be incorporated into conventional and PEGylated liposomes for drug concentrations up to 15 mol % without phase separation. We observed that, in addition to its protective properties, PEGylation significantly increases the stability of liposomes that host ITZ. In a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer without PEGylation, ITZ was found to reside inside the lipid bilayer between the glycerol and the double-bond regions of POPC, adopting a largely parallel orientation along the membrane surface. In a PEGylated liposome, ITZ partitions mainly to the PEG layer. The results provide a solid basis for further development of liposome-based delivery systems.
Department of Physics Tampere University of Technology P O Box 692 FI 33101 Tampere Finland
Faculty of Chemistry Jagiellonian University Ingardena 3 30 060 Kraków Poland
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18016749
- 003
- CZ-PrNML
- 005
- 20180515103533.0
- 007
- ta
- 008
- 180515s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acs.molpharmaceut.6b00969 $2 doi
- 035 __
- $a (PubMed)28234487
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Dzieciuch-Rojek, Monika $u Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Kraków, Poland.
- 245 10
- $a Effects of Membrane PEGylation on Entry and Location of Antifungal Drug Itraconazole and Their Pharmacological Implications / $c M. Dzieciuch-Rojek, C. Poojari, J. Bednar, A. Bunker, B. Kozik, M. Nowakowska, I. Vattulainen, P. Wydro, M. Kepczynski, T. Róg,
- 520 9_
- $a Itraconazole (ITZ) is an antifungal agent used clinically to treat mycotic infections. However, its therapeutic effects are limited by low solubility in aqueous media. Liposome-based delivery systems (LDS) have been proposed as a delivery mechanism for ITZ to alleviate this problem. Furthermore, PEGylation, the inclusion in the formulation of a protective "stealth sheath" of poly(ethylene glycol) around carrier particles, is widely used to increase circulation time in the bloodstream and hence efficacy. Together, these themes highlight the importance of mechanistic and structural understanding of ITZ incorporation into liposomes both with and without PEGylation because it can provide a potential foundation for the rational design of LDS-based systems for delivery of ITZ, using alternate protective polymers or formulations. Here we have combined atomistic simulations, cryo-TEM, Langmuir film balance, and fluorescence quenching experiments to explore how ITZ interacts with both pristine and PEGylated liposomes. We found that the drug can be incorporated into conventional and PEGylated liposomes for drug concentrations up to 15 mol % without phase separation. We observed that, in addition to its protective properties, PEGylation significantly increases the stability of liposomes that host ITZ. In a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer without PEGylation, ITZ was found to reside inside the lipid bilayer between the glycerol and the double-bond regions of POPC, adopting a largely parallel orientation along the membrane surface. In a PEGylated liposome, ITZ partitions mainly to the PEG layer. The results provide a solid basis for further development of liposome-based delivery systems.
- 650 _2
- $a antifungální látky $x chemie $7 D000935
- 650 _2
- $a chemie farmaceutická $x metody $7 D002626
- 650 _2
- $a systémy cílené aplikace léků $x metody $7 D016503
- 650 _2
- $a fluorescence $7 D005453
- 650 _2
- $a itrakonazol $x chemie $7 D017964
- 650 _2
- $a lipidové dvojvrstvy $x chemie $7 D008051
- 650 _2
- $a liposomy $x chemie $7 D008081
- 650 _2
- $a membrány $x chemie $7 D008566
- 650 _2
- $a fosfatidylcholiny $x chemie $7 D010713
- 650 _2
- $a polyethylenglykoly $x chemie $7 D011092
- 650 _2
- $a polymery $x chemie $7 D011108
- 650 _2
- $a ochranné látky $x chemie $7 D020011
- 650 _2
- $a rozpustnost $7 D012995
- 650 _2
- $a povrchové vlastnosti $7 D013499
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Poojari, Chetan $u Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland.
- 700 1_
- $a Bednar, Jan $u Université de Grenoble Alpes/CNRS, Institut Albert Bonniot , UMR 5309, 38042 CEDEX 9 Grenoble, France. First Faculty of Medicine, Laboratory of Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, Charles University in Prague , KeKarlovu 2, 12800 Prague 2, Czech Republic.
- 700 1_
- $a Bunker, Alex $u Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland.
- 700 1_
- $a Kozik, Bartłomiej $u Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Kraków, Poland.
- 700 1_
- $a Nowakowska, Maria $u Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Kraków, Poland.
- 700 1_
- $a Vattulainen, Ilpo $u Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland. Department of Physics, University of Helsinki , P.O. Box 64, FI-00014 Helsinki, Finland. MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark , Odense, Denmark.
- 700 1_
- $a Wydro, Paweł $u Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Kraków, Poland.
- 700 1_
- $a Kepczynski, Mariusz $u Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Kraków, Poland.
- 700 1_
- $a Róg, Tomasz $u Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland. Department of Physics, University of Helsinki , P.O. Box 64, FI-00014 Helsinki, Finland.
- 773 0_
- $w MED00008279 $t Molecular pharmaceutics $x 1543-8392 $g Roč. 14, č. 4 (2017), s. 1057-1070
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28234487 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180515103706 $b ABA008
- 999 __
- $a ok $b bmc $g 1300373 $s 1013589
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 14 $c 4 $d 1057-1070 $e 20170307 $i 1543-8392 $m Molecular pharmaceutics $n Mol Pharm $x MED00008279
- LZP __
- $a Pubmed-20180515