-
Je něco špatně v tomto záznamu ?
Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes
J. Puterova, O. Razumova, T. Martinek, O. Alexandrov, M. Divashuk, Z. Kubat, R. Hobza, G. Karlov, E. Kejnovsky,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2009
Free Medical Journals
od 2009
PubMed Central
od 2009
Europe PubMed Central
od 2009
Open Access Digital Library
od 2009-01-01
Open Access Digital Library
od 2009-01-01
Open Access Digital Library
od 2009-01-01
Oxford Journals Open Access Collection
od 2009
ROAD: Directory of Open Access Scholarly Resources
od 2009
PubMed
28057732
DOI
10.1093/gbe/evw303
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin * MeSH
- DNA rostlinná genetika MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- Hippophae genetika MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy * MeSH
- satelitní DNA * MeSH
- sekvenční analýza DNA metody MeSH
- transpozibilní elementy DNA * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Seabuckthorn (Hippophae rhamnoides) is a dioecious shrub commonly used in the pharmaceutical, cosmetic, and environmental industry as a source of oil, minerals and vitamins. In this study, we analyzed the transposable elements and satellites in its genome. We carried out Illumina DNA sequencing and reconstructed the main repetitive DNA sequences. For data analysis, we developed a new bioinformatics approach for advanced satellite DNA analysis and showed that about 25% of the genome consists of satellite DNA and about 24% is formed of transposable elements, dominated by Ty3/Gypsy and Ty1/Copia LTR retrotransposons. FISH mapping revealed X chromosome-accumulated, Y chromosome-specific or both sex chromosomes-accumulated satellites but most satellites were found on autosomes. Transposable elements were located mostly in the subtelomeres of all chromosomes. The 5S rDNA and 45S rDNA were localized on one autosomal locus each. Although we demonstrated the small size of the Y chromosome of the seabuckthorn and accumulated satellite DNA there, we were unable to estimate the age and extent of the Y chromosome degeneration. Analysis of dioecious relatives such as Shepherdia would shed more light on the evolution of these sex chromosomes.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18016824
- 003
- CZ-PrNML
- 005
- 20180521101450.0
- 007
- ta
- 008
- 180515s2017 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/gbe/evw303 $2 doi
- 035 __
- $a (PubMed)28057732
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Puterova, Janka $u Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic. Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic.
- 245 10
- $a Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes / $c J. Puterova, O. Razumova, T. Martinek, O. Alexandrov, M. Divashuk, Z. Kubat, R. Hobza, G. Karlov, E. Kejnovsky,
- 520 9_
- $a Seabuckthorn (Hippophae rhamnoides) is a dioecious shrub commonly used in the pharmaceutical, cosmetic, and environmental industry as a source of oil, minerals and vitamins. In this study, we analyzed the transposable elements and satellites in its genome. We carried out Illumina DNA sequencing and reconstructed the main repetitive DNA sequences. For data analysis, we developed a new bioinformatics approach for advanced satellite DNA analysis and showed that about 25% of the genome consists of satellite DNA and about 24% is formed of transposable elements, dominated by Ty3/Gypsy and Ty1/Copia LTR retrotransposons. FISH mapping revealed X chromosome-accumulated, Y chromosome-specific or both sex chromosomes-accumulated satellites but most satellites were found on autosomes. Transposable elements were located mostly in the subtelomeres of all chromosomes. The 5S rDNA and 45S rDNA were localized on one autosomal locus each. Although we demonstrated the small size of the Y chromosome of the seabuckthorn and accumulated satellite DNA there, we were unable to estimate the age and extent of the Y chromosome degeneration. Analysis of dioecious relatives such as Shepherdia would shed more light on the evolution of these sex chromosomes.
- 650 12
- $a chromozomy rostlin $7 D032461
- 650 12
- $a transpozibilní elementy DNA $7 D004251
- 650 _2
- $a DNA rostlinná $x genetika $7 D018744
- 650 12
- $a satelitní DNA $7 D004276
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 _2
- $a genom rostlinný $7 D018745
- 650 _2
- $a Hippophae $x genetika $7 D031281
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a sekvenční analýza DNA $x metody $7 D017422
- 650 12
- $a pohlavní chromozomy $7 D012730
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Razumova, Olga $u Centre for Molecular Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia.
- 700 1_
- $a Martinek, Tomas $u Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic.
- 700 1_
- $a Alexandrov, Oleg $u Centre for Molecular Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia.
- 700 1_
- $a Divashuk, Mikhail $u Centre for Molecular Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia.
- 700 1_
- $a Kubat, Zdenek $u Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
- 700 1_
- $a Hobza, Roman $u Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic. Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
- 700 1_
- $a Karlov, Gennady $u Centre for Molecular Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia. All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia.
- 700 1_
- $a Kejnovsky, Eduard $u Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
- 773 0_
- $w MED00170504 $t Genome biology and evolution $x 1759-6653 $g Roč. 9, č. 1 (2017), s. 197-212
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28057732 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180521101631 $b ABA008
- 999 __
- $a ok $b bmc $g 1300448 $s 1013664
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 9 $c 1 $d 197-212 $i 1759-6653 $m Genome biology and evolution $n Genome Biol Evol $x MED00170504
- LZP __
- $a Pubmed-20180515