-
Je něco špatně v tomto záznamu ?
Knockout of Tmem70 alters biogenesis of ATP synthase and leads to embryonal lethality in mice
M. Vrbacký, J. Kovalčíková, K. Chawengsaksophak, IM. Beck, T. Mráček, H. Nůsková, D. Sedmera, F. Papoušek, F. Kolář, M. Sobol, P. Hozák, R. Sedlacek, J. Houštěk,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NV16-33018A
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
NLK
Free Medical Journals
od 1996 do Před 1 rokem
Open Access Digital Library
od 1996-01-01
PubMed
28173120
DOI
10.1093/hmg/ddw295
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát metabolismus MeSH
- homozygot MeSH
- kardiomyopatie metabolismus MeSH
- membránové proteiny nedostatek genetika metabolismus MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondriální nemoci genetika metabolismus MeSH
- mitochondriální proteiny nedostatek genetika metabolismus MeSH
- mitochondriální protonové ATPasy biosyntéza genetika metabolismus MeSH
- mitochondrie metabolismus MeSH
- mutace MeSH
- myši knockoutované MeSH
- myši MeSH
- oxidativní fosforylace MeSH
- těhotenství MeSH
- vrozené poruchy metabolismu metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
TMEM70, a 21-kDa protein localized in the inner mitochondrial membrane, has been shown to facilitate the biogenesis of mammalian F1Fo ATP synthase. Mutations of the TMEM70 gene represent the most frequent cause of isolated ATP synthase deficiency resulting in a severe mitochondrial disease presenting as neonatal encephalo-cardiomyopathy (OMIM 604273). To better understand the biological role of this factor, we generated Tmem70-deficient mice and found that the homozygous Tmem70-/- knockouts exhibited profound growth retardation and embryonic lethality at ∼9.5 days post coitum. Blue-Native electrophoresis demonstrated an isolated deficiency in fully assembled ATP synthase in the Tmem70-/- embryos (80% decrease) and a marked accumulation of F1 complexes indicative of impairment in ATP synthase biogenesis that was stalled at the early stage, following the formation of F1 oligomer. Consequently, a decrease in ADP-stimulated State 3 respiration, respiratory control ratio and ATP/ADP ratios, indicated compromised mitochondrial ATP production. Tmem70-/- embryos exhibited delayed development of the cardiovascular system and a disturbed heart mitochondrial ultrastructure, with concentric or irregular cristae structures. Tmem70+/- heterozygous mice were fully viable and displayed normal postnatal growth and development of the mitochondrial oxidative phosphorylation system. Nevertheless, they presented with mild deterioration of heart function. Our results demonstrated that Tmem70 knockout in the mouse results in embryonic lethality due to the lack of ATP synthase and impairment of mitochondrial energy provision. This is analogous to TMEM70 dysfunction in humans and verifies the crucial role of this factor in the biosynthesis and assembly of mammalian ATP synthase.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18010819
- 003
- CZ-PrNML
- 005
- 20180417152757.0
- 007
- ta
- 008
- 180404s2016 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/hmg/ddw295 $2 doi
- 035 __
- $a (PubMed)28173120
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Vrbacký, Marek $u Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 245 10
- $a Knockout of Tmem70 alters biogenesis of ATP synthase and leads to embryonal lethality in mice / $c M. Vrbacký, J. Kovalčíková, K. Chawengsaksophak, IM. Beck, T. Mráček, H. Nůsková, D. Sedmera, F. Papoušek, F. Kolář, M. Sobol, P. Hozák, R. Sedlacek, J. Houštěk,
- 520 9_
- $a TMEM70, a 21-kDa protein localized in the inner mitochondrial membrane, has been shown to facilitate the biogenesis of mammalian F1Fo ATP synthase. Mutations of the TMEM70 gene represent the most frequent cause of isolated ATP synthase deficiency resulting in a severe mitochondrial disease presenting as neonatal encephalo-cardiomyopathy (OMIM 604273). To better understand the biological role of this factor, we generated Tmem70-deficient mice and found that the homozygous Tmem70-/- knockouts exhibited profound growth retardation and embryonic lethality at ∼9.5 days post coitum. Blue-Native electrophoresis demonstrated an isolated deficiency in fully assembled ATP synthase in the Tmem70-/- embryos (80% decrease) and a marked accumulation of F1 complexes indicative of impairment in ATP synthase biogenesis that was stalled at the early stage, following the formation of F1 oligomer. Consequently, a decrease in ADP-stimulated State 3 respiration, respiratory control ratio and ATP/ADP ratios, indicated compromised mitochondrial ATP production. Tmem70-/- embryos exhibited delayed development of the cardiovascular system and a disturbed heart mitochondrial ultrastructure, with concentric or irregular cristae structures. Tmem70+/- heterozygous mice were fully viable and displayed normal postnatal growth and development of the mitochondrial oxidative phosphorylation system. Nevertheless, they presented with mild deterioration of heart function. Our results demonstrated that Tmem70 knockout in the mouse results in embryonic lethality due to the lack of ATP synthase and impairment of mitochondrial energy provision. This is analogous to TMEM70 dysfunction in humans and verifies the crucial role of this factor in the biosynthesis and assembly of mammalian ATP synthase.
- 650 _2
- $a adenosintrifosfát $x metabolismus $7 D000255
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a kardiomyopatie $x metabolismus $7 D009202
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a homozygot $7 D006720
- 650 _2
- $a membránové proteiny $x nedostatek $x genetika $x metabolismus $7 D008565
- 650 _2
- $a vrozené poruchy metabolismu $x metabolismus $7 D008661
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši knockoutované $7 D018345
- 650 _2
- $a mitochondrie $x metabolismus $7 D008928
- 650 _2
- $a mitochondriální nemoci $x genetika $x metabolismus $7 D028361
- 650 _2
- $a mitochondriální membrány $x metabolismus $7 D051336
- 650 _2
- $a mitochondriální proteiny $x nedostatek $x genetika $x metabolismus $7 D024101
- 650 _2
- $a mitochondriální protonové ATPasy $x biosyntéza $x genetika $x metabolismus $7 D025261
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a oxidativní fosforylace $7 D010085
- 650 _2
- $a těhotenství $7 D011247
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kovalčíková, Jana $u Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. First Faculty of Medicine, Charles University, Prague, Czech Republic
- 700 1_
- $a Chawengsaksophak, Kallayanee $u Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic. Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Beck, Inken M $u Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Mráček, Tomáš $u Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Nůsková, Hana $u Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Sedmera, David $u Department of Cardiovascular Morphogenesis, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- 700 1_
- $a Papoušek, František $u Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Kolář, František $u Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Sobol, Margarita $u Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Hozák, Pavel $u Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Sedlacek, Radislav $u Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic. Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Houštěk, Josef $u Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 773 0_
- $w MED00002077 $t Human molecular genetics $x 1460-2083 $g Roč. 25, č. 21 (2016), s. 4674-4685
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28173120 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180404 $b ABA008
- 991 __
- $a 20180417152855 $b ABA008
- 999 __
- $a ok $b bmc $g 1288304 $s 1007631
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 25 $c 21 $d 4674-4685 $i 1460-2083 $m Human molecular genetics $n Hum Mol Genet $x MED00002077
- GRA __
- $a NV16-33018A $p MZ0
- LZP __
- $a Pubmed-20180404