• Je něco špatně v tomto záznamu ?

Behavioral state classification in epileptic brain using intracranial electrophysiology

V. Kremen, JJ. Duque, BH. Brinkmann, BM. Berry, MT. Kucewicz, F. Khadjevand, J. Van Gompel, M. Stead, EK. St Louis, GA. Worrell,

. 2017 ; 14 (2) : 026001. [pub] 20170104

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18016826

OBJECTIVE: Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. APPROACH: Data from seven patients (age [Formula: see text], 4 women) who underwent intracranial depth electrode implantation for iEEG monitoring were included. Spectral power features (0.1-600 Hz) spanning several frequency bands from a single electrode were used to train and test a support vector machine classifier. MAIN RESULTS: Classification accuracy of 97.8  ±  0.3% (normal tissue) and 89.4  ±  0.8% (epileptic tissue) across seven subjects using multiple spectral power features from a single electrode was achieved. Spectral power features from electrodes placed in normal temporal neocortex were found to be more useful (accuracy 90.8  ±  0.8%) for sleep-wake state classification than electrodes located in normal hippocampus (87.1  ±  1.6%). Spectral power in high frequency band features (Ripple (80-250 Hz), Fast Ripple (250-600 Hz)) showed comparable performance for AW and SWS classification as the best performing Berger bands (Alpha, Beta, low Gamma) with accuracy  ⩾90% using a single electrode contact and single spectral feature. SIGNIFICANCE: Automated classification of wake and SWS should prove useful for future implantable epilepsy devices with limited computational power, memory, and number of electrodes. Applications include quantifying patient sleep patterns and behavioral state dependent detection, prediction, and electrical stimulation therapies.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18016826
003      
CZ-PrNML
005      
20180521093218.0
007      
ta
008      
180515s2017 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1741-2552/aa5688 $2 doi
035    __
$a (PubMed)28050973
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Kremen, Vaclav $u Department of Neurology, Mayo Systems Electrophysiology Laboratory, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Zikova street 1903/4, 166 36 Prague 6, Czech Republic. Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
245    10
$a Behavioral state classification in epileptic brain using intracranial electrophysiology / $c V. Kremen, JJ. Duque, BH. Brinkmann, BM. Berry, MT. Kucewicz, F. Khadjevand, J. Van Gompel, M. Stead, EK. St Louis, GA. Worrell,
520    9_
$a OBJECTIVE: Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. APPROACH: Data from seven patients (age [Formula: see text], 4 women) who underwent intracranial depth electrode implantation for iEEG monitoring were included. Spectral power features (0.1-600 Hz) spanning several frequency bands from a single electrode were used to train and test a support vector machine classifier. MAIN RESULTS: Classification accuracy of 97.8  ±  0.3% (normal tissue) and 89.4  ±  0.8% (epileptic tissue) across seven subjects using multiple spectral power features from a single electrode was achieved. Spectral power features from electrodes placed in normal temporal neocortex were found to be more useful (accuracy 90.8  ±  0.8%) for sleep-wake state classification than electrodes located in normal hippocampus (87.1  ±  1.6%). Spectral power in high frequency band features (Ripple (80-250 Hz), Fast Ripple (250-600 Hz)) showed comparable performance for AW and SWS classification as the best performing Berger bands (Alpha, Beta, low Gamma) with accuracy  ⩾90% using a single electrode contact and single spectral feature. SIGNIFICANCE: Automated classification of wake and SWS should prove useful for future implantable epilepsy devices with limited computational power, memory, and number of electrodes. Applications include quantifying patient sleep patterns and behavioral state dependent detection, prediction, and electrical stimulation therapies.
650    _2
$a dospělí $7 D000328
650    12
$a algoritmy $7 D000465
650    _2
$a diagnóza počítačová $x metody $7 D003936
650    _2
$a elektrokortikografie $x metody $7 D000069280
650    _2
$a epilepsie $x diagnóza $x patofyziologie $7 D004827
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a hipokampus $x patofyziologie $7 D006624
650    _2
$a lidé $7 D006801
650    _2
$a strojové učení $7 D000069550
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a rozpoznávání automatizované $x metody $7 D010363
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a senzitivita a specificita $7 D012680
650    12
$a stadia spánku $7 D012894
655    _2
$a časopisecké články $7 D016428
700    1_
$a Duque, Juliano J
700    1_
$a Brinkmann, Benjamin H
700    1_
$a Berry, Brent M
700    1_
$a Kucewicz, Michal T
700    1_
$a Khadjevand, Fatemeh
700    1_
$a Van Gompel, Jamie
700    1_
$a Stead, Matt
700    1_
$a St Louis, Erik K
700    1_
$a Worrell, Gregory A
773    0_
$w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 14, č. 2 (2017), s. 026001
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28050973 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180515 $b ABA008
991    __
$a 20180521093400 $b ABA008
999    __
$a ok $b bmc $g 1300450 $s 1013666
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 14 $c 2 $d 026001 $e 20170104 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
LZP    __
$a Pubmed-20180515

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...