-
Je něco špatně v tomto záznamu ?
Behavioral state classification in epileptic brain using intracranial electrophysiology
V. Kremen, JJ. Duque, BH. Brinkmann, BM. Berry, MT. Kucewicz, F. Khadjevand, J. Van Gompel, M. Stead, EK. St Louis, GA. Worrell,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články
PubMed
28050973
DOI
10.1088/1741-2552/aa5688
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- diagnóza počítačová metody MeSH
- dospělí MeSH
- elektrokortikografie metody MeSH
- epilepsie diagnóza patofyziologie MeSH
- hipokampus patofyziologie MeSH
- lidé MeSH
- reprodukovatelnost výsledků MeSH
- rozpoznávání automatizované metody MeSH
- senzitivita a specificita MeSH
- stadia spánku * MeSH
- strojové učení MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. APPROACH: Data from seven patients (age [Formula: see text], 4 women) who underwent intracranial depth electrode implantation for iEEG monitoring were included. Spectral power features (0.1-600 Hz) spanning several frequency bands from a single electrode were used to train and test a support vector machine classifier. MAIN RESULTS: Classification accuracy of 97.8 ± 0.3% (normal tissue) and 89.4 ± 0.8% (epileptic tissue) across seven subjects using multiple spectral power features from a single electrode was achieved. Spectral power features from electrodes placed in normal temporal neocortex were found to be more useful (accuracy 90.8 ± 0.8%) for sleep-wake state classification than electrodes located in normal hippocampus (87.1 ± 1.6%). Spectral power in high frequency band features (Ripple (80-250 Hz), Fast Ripple (250-600 Hz)) showed comparable performance for AW and SWS classification as the best performing Berger bands (Alpha, Beta, low Gamma) with accuracy ⩾90% using a single electrode contact and single spectral feature. SIGNIFICANCE: Automated classification of wake and SWS should prove useful for future implantable epilepsy devices with limited computational power, memory, and number of electrodes. Applications include quantifying patient sleep patterns and behavioral state dependent detection, prediction, and electrical stimulation therapies.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18016826
- 003
- CZ-PrNML
- 005
- 20180521093218.0
- 007
- ta
- 008
- 180515s2017 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1088/1741-2552/aa5688 $2 doi
- 035 __
- $a (PubMed)28050973
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Kremen, Vaclav $u Department of Neurology, Mayo Systems Electrophysiology Laboratory, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Zikova street 1903/4, 166 36 Prague 6, Czech Republic. Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
- 245 10
- $a Behavioral state classification in epileptic brain using intracranial electrophysiology / $c V. Kremen, JJ. Duque, BH. Brinkmann, BM. Berry, MT. Kucewicz, F. Khadjevand, J. Van Gompel, M. Stead, EK. St Louis, GA. Worrell,
- 520 9_
- $a OBJECTIVE: Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. APPROACH: Data from seven patients (age [Formula: see text], 4 women) who underwent intracranial depth electrode implantation for iEEG monitoring were included. Spectral power features (0.1-600 Hz) spanning several frequency bands from a single electrode were used to train and test a support vector machine classifier. MAIN RESULTS: Classification accuracy of 97.8 ± 0.3% (normal tissue) and 89.4 ± 0.8% (epileptic tissue) across seven subjects using multiple spectral power features from a single electrode was achieved. Spectral power features from electrodes placed in normal temporal neocortex were found to be more useful (accuracy 90.8 ± 0.8%) for sleep-wake state classification than electrodes located in normal hippocampus (87.1 ± 1.6%). Spectral power in high frequency band features (Ripple (80-250 Hz), Fast Ripple (250-600 Hz)) showed comparable performance for AW and SWS classification as the best performing Berger bands (Alpha, Beta, low Gamma) with accuracy ⩾90% using a single electrode contact and single spectral feature. SIGNIFICANCE: Automated classification of wake and SWS should prove useful for future implantable epilepsy devices with limited computational power, memory, and number of electrodes. Applications include quantifying patient sleep patterns and behavioral state dependent detection, prediction, and electrical stimulation therapies.
- 650 _2
- $a dospělí $7 D000328
- 650 12
- $a algoritmy $7 D000465
- 650 _2
- $a diagnóza počítačová $x metody $7 D003936
- 650 _2
- $a elektrokortikografie $x metody $7 D000069280
- 650 _2
- $a epilepsie $x diagnóza $x patofyziologie $7 D004827
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a hipokampus $x patofyziologie $7 D006624
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 12
- $a stadia spánku $7 D012894
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Duque, Juliano J
- 700 1_
- $a Brinkmann, Benjamin H
- 700 1_
- $a Berry, Brent M
- 700 1_
- $a Kucewicz, Michal T
- 700 1_
- $a Khadjevand, Fatemeh
- 700 1_
- $a Van Gompel, Jamie
- 700 1_
- $a Stead, Matt
- 700 1_
- $a St Louis, Erik K
- 700 1_
- $a Worrell, Gregory A
- 773 0_
- $w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 14, č. 2 (2017), s. 026001
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28050973 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180521093400 $b ABA008
- 999 __
- $a ok $b bmc $g 1300450 $s 1013666
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 14 $c 2 $d 026001 $e 20170104 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
- LZP __
- $a Pubmed-20180515