-
Je něco špatně v tomto záznamu ?
Virtual cell imaging: A review on simulation methods employed in image cytometry
V. Ulman, D. Svoboda, M. Nykter, M. Kozubek, P. Ruusuvuori,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, přehledy
NLK
Free Medical Journals
od 2003 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2012-06-01 do Před 1 rokem
Wiley Free Content
od 2003 do Před 1 rokem
PubMed
27922735
DOI
10.1002/cyto.a.23031
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- interpretace obrazu počítačem metody MeSH
- lidé MeSH
- obrazová cytometrie metody MeSH
- rozpoznávání automatizované metody MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The simulations of cells and microscope images thereof have been used to facilitate the development, selection, and validation of image analysis algorithms employed in cytometry as well as for modeling and understanding cell structure and dynamics beyond what is visible in the eyepiece. The simulation approaches vary from simple parametric models of specific cell components-especially shapes of cells and cell nuclei-to learning-based synthesis and multi-stage simulation models for complex scenes that simultaneously visualize multiple object types and incorporate various properties of the imaged objects and laws of image formation. This review covers advances in artificial digital cell generation at scales ranging from particles up to tissue synthesis and microscope image simulation methods, provides examples of the use of simulated images for various purposes ranging from subcellular object detection to cell tracking, and discusses how such simulators have been validated. Finally, the future possibilities and limitations of simulation-based validation are considered. © 2016 International Society for Advancement of Cytometry.
Centre for Biomedical Image Analysis Faculty of Informatics Masaryk University Brno Czech Republic
Institute of Biosciences and Medical Technology BioMediTech University of Tampere Tampere Finland
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18016880
- 003
- CZ-PrNML
- 005
- 20180518111205.0
- 007
- ta
- 008
- 180515s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/cyto.a.23031 $2 doi
- 035 __
- $a (PubMed)27922735
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Ulman, Vladimír $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic.
- 245 10
- $a Virtual cell imaging: A review on simulation methods employed in image cytometry / $c V. Ulman, D. Svoboda, M. Nykter, M. Kozubek, P. Ruusuvuori,
- 520 9_
- $a The simulations of cells and microscope images thereof have been used to facilitate the development, selection, and validation of image analysis algorithms employed in cytometry as well as for modeling and understanding cell structure and dynamics beyond what is visible in the eyepiece. The simulation approaches vary from simple parametric models of specific cell components-especially shapes of cells and cell nuclei-to learning-based synthesis and multi-stage simulation models for complex scenes that simultaneously visualize multiple object types and incorporate various properties of the imaged objects and laws of image formation. This review covers advances in artificial digital cell generation at scales ranging from particles up to tissue synthesis and microscope image simulation methods, provides examples of the use of simulated images for various purposes ranging from subcellular object detection to cell tracking, and discusses how such simulators have been validated. Finally, the future possibilities and limitations of simulation-based validation are considered. © 2016 International Society for Advancement of Cytometry.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a umělá inteligence $7 D001185
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a obrazová cytometrie $x metody $7 D019044
- 650 _2
- $a interpretace obrazu počítačem $x metody $7 D007090
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Svoboda, David $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Nykter, Matti $u Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere, Tampere, Finland.
- 700 1_
- $a Kozubek, Michal $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Ruusuvuori, Pekka $u Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere, Tampere, Finland. Pori Campus, Tampere University of Technology, Pori, Finland.
- 773 0_
- $w MED00013935 $t Cytometry. Part A the journal of the International Society for Analytical Cytology $x 1552-4930 $g Roč. 89, č. 12 (2016), s. 1057-1072
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27922735 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180518111343 $b ABA008
- 999 __
- $a ok $b bmc $g 1300504 $s 1013720
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 89 $c 12 $d 1057-1072 $e 20161206 $i 1552-4930 $m Cytometry. Part A $n Cytometry A $x MED00013935
- LZP __
- $a Pubmed-20180515