-
Something wrong with this record ?
The Allelochemical MDCA Inhibits Lignification and Affects Auxin Homeostasis
W. Steenackers, I. Cesarino, P. Klíma, M. Quareshy, R. Vanholme, S. Corneillie, RP. Kumpf, D. Van de Wouwer, K. Ljung, G. Goeminne, O. Novák, E. Zažímalová, R. Napier, W. Boerjan, B. Vanholme,
Language English Country United States
Document type Journal Article
NLK
Free Medical Journals
from 1926 to 1 year ago
Open Access Digital Library
from 1926-01-01
PubMed
27506238
DOI
10.1104/pp.15.01972
Knihovny.cz E-resources
- MeSH
- Trans-Cinnamate 4-Monooxygenase antagonists & inhibitors metabolism MeSH
- Arabidopsis drug effects genetics metabolism MeSH
- Benzoates metabolism pharmacology MeSH
- Biosynthetic Pathways drug effects MeSH
- Cinnamates chemistry metabolism pharmacology MeSH
- Phenylpropionates chemistry metabolism pharmacology MeSH
- Plants, Genetically Modified MeSH
- Mass Spectrometry MeSH
- Homeostasis drug effects MeSH
- Coenzyme A Ligases antagonists & inhibitors metabolism MeSH
- Microscopy, Confocal MeSH
- Plant Roots drug effects genetics metabolism MeSH
- Indoleacetic Acids metabolism MeSH
- Lignin biosynthesis MeSH
- Seedlings drug effects genetics growth & development metabolism MeSH
- Dose-Response Relationship, Drug MeSH
- Publication type
- Journal Article MeSH
The phenylpropanoid 3,4-(methylenedioxy)cinnamic acid (MDCA) is a plant-derived compound first extracted from roots of Asparagus officinalis and further characterized as an allelochemical. Later on, MDCA was identified as an efficient inhibitor of 4-COUMARATE-CoA LIGASE (4CL), a key enzyme of the general phenylpropanoid pathway. By blocking 4CL, MDCA affects the biosynthesis of many important metabolites, which might explain its phytotoxicity. To decipher the molecular basis of the allelochemical activity of MDCA, we evaluated the effect of this compound on Arabidopsis thaliana seedlings. Metabolic profiling revealed that MDCA is converted in planta into piperonylic acid (PA), an inhibitor of CINNAMATE-4-HYDROXYLASE (C4H), the enzyme directly upstream of 4CL. The inhibition of C4H was also reflected in the phenolic profile of MDCA-treated plants. Treatment of in vitro grown plants resulted in an inhibition of primary root growth and a proliferation of lateral and adventitious roots. These observed growth defects were not the consequence of lignin perturbation, but rather the result of disturbing auxin homeostasis. Based on DII-VENUS quantification and direct measurement of cellular auxin transport, we concluded that MDCA disturbs auxin gradients by interfering with auxin efflux. In addition, mass spectrometry was used to show that MDCA triggers auxin biosynthesis, conjugation, and catabolism. A similar shift in auxin homeostasis was found in the c4h mutant ref3-2, indicating that MDCA triggers a cross talk between the phenylpropanoid and auxin biosynthetic pathways independent from the observed auxin efflux inhibition. Altogether, our data provide, to our knowledge, a novel molecular explanation for the phytotoxic properties of MDCA.
Department of Plant Biotechnology and Bioinformatics Ghent University B 9052 Gent Belgium
Department of Plant Systems Biology VIB B 9052 Gent Belgium
Institute of Experimental Botany the Czech Academy of Sciences 16502 Prague the Czech Republic
School of Life Sciences University of Warwick CV4 7AL Coventry United Kingdom
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18017105
- 003
- CZ-PrNML
- 005
- 20180515103241.0
- 007
- ta
- 008
- 180515s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1104/pp.15.01972 $2 doi
- 035 __
- $a (PubMed)27506238
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Steenackers, Ward $u Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.).
- 245 14
- $a The Allelochemical MDCA Inhibits Lignification and Affects Auxin Homeostasis / $c W. Steenackers, I. Cesarino, P. Klíma, M. Quareshy, R. Vanholme, S. Corneillie, RP. Kumpf, D. Van de Wouwer, K. Ljung, G. Goeminne, O. Novák, E. Zažímalová, R. Napier, W. Boerjan, B. Vanholme,
- 520 9_
- $a The phenylpropanoid 3,4-(methylenedioxy)cinnamic acid (MDCA) is a plant-derived compound first extracted from roots of Asparagus officinalis and further characterized as an allelochemical. Later on, MDCA was identified as an efficient inhibitor of 4-COUMARATE-CoA LIGASE (4CL), a key enzyme of the general phenylpropanoid pathway. By blocking 4CL, MDCA affects the biosynthesis of many important metabolites, which might explain its phytotoxicity. To decipher the molecular basis of the allelochemical activity of MDCA, we evaluated the effect of this compound on Arabidopsis thaliana seedlings. Metabolic profiling revealed that MDCA is converted in planta into piperonylic acid (PA), an inhibitor of CINNAMATE-4-HYDROXYLASE (C4H), the enzyme directly upstream of 4CL. The inhibition of C4H was also reflected in the phenolic profile of MDCA-treated plants. Treatment of in vitro grown plants resulted in an inhibition of primary root growth and a proliferation of lateral and adventitious roots. These observed growth defects were not the consequence of lignin perturbation, but rather the result of disturbing auxin homeostasis. Based on DII-VENUS quantification and direct measurement of cellular auxin transport, we concluded that MDCA disturbs auxin gradients by interfering with auxin efflux. In addition, mass spectrometry was used to show that MDCA triggers auxin biosynthesis, conjugation, and catabolism. A similar shift in auxin homeostasis was found in the c4h mutant ref3-2, indicating that MDCA triggers a cross talk between the phenylpropanoid and auxin biosynthetic pathways independent from the observed auxin efflux inhibition. Altogether, our data provide, to our knowledge, a novel molecular explanation for the phytotoxic properties of MDCA.
- 650 _2
- $a Arabidopsis $x účinky léků $x genetika $x metabolismus $7 D017360
- 650 _2
- $a benzoáty $x metabolismus $x farmakologie $7 D001565
- 650 _2
- $a biosyntetické dráhy $x účinky léků $7 D053898
- 650 _2
- $a cinnamáty $x chemie $x metabolismus $x farmakologie $7 D002934
- 650 _2
- $a koenzym A-ligasy $x antagonisté a inhibitory $x metabolismus $7 D003066
- 650 _2
- $a vztah mezi dávkou a účinkem léčiva $7 D004305
- 650 _2
- $a homeostáza $x účinky léků $7 D006706
- 650 _2
- $a kyseliny indoloctové $x metabolismus $7 D007210
- 650 _2
- $a lignin $x biosyntéza $7 D008031
- 650 _2
- $a hmotnostní spektrometrie $7 D013058
- 650 _2
- $a konfokální mikroskopie $7 D018613
- 650 _2
- $a fenylpropionáty $x chemie $x metabolismus $x farmakologie $7 D010666
- 650 _2
- $a kořeny rostlin $x účinky léků $x genetika $x metabolismus $7 D018517
- 650 _2
- $a geneticky modifikované rostliny $7 D030821
- 650 _2
- $a semenáček $x účinky léků $x genetika $x růst a vývoj $x metabolismus $7 D036226
- 650 _2
- $a 4-monooxygenasa kyseliny skořicové $x antagonisté a inhibitory $x metabolismus $7 D050564
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Cesarino, Igor $u Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.).
- 700 1_
- $a Klíma, Petr $u Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.).
- 700 1_
- $a Quareshy, Mussa $u Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.).
- 700 1_
- $a Vanholme, Ruben $u Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.).
- 700 1_
- $a Corneillie, Sander $u Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.).
- 700 1_
- $a Kumpf, Robert Peter $u Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.).
- 700 1_
- $a Van de Wouwer, Dorien $u Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.).
- 700 1_
- $a Ljung, Karin $u Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.).
- 700 1_
- $a Goeminne, Geert $u Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.).
- 700 1_
- $a Novák, Ondřej $u Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.).
- 700 1_
- $a Zažímalová, Eva $u Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.).
- 700 1_
- $a Napier, Richard $u Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.).
- 700 1_
- $a Boerjan, Wout $u Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.) bartel.vanholme@psb.vib-ugent.be wout.boerjan@psb.vib-ugent.be.
- 700 1_
- $a Vanholme, Bartel $u Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.) bartel.vanholme@psb.vib-ugent.be wout.boerjan@psb.vib-ugent.be.
- 773 0_
- $w MED00005317 $t Plant physiology $x 1532-2548 $g Roč. 172, č. 2 (2016), s. 874-888
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27506238 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180515103415 $b ABA008
- 999 __
- $a ok $b bmc $g 1300729 $s 1013945
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 172 $c 2 $d 874-888 $e 20160809 $i 1532-2548 $m Plant physiology $n Plant Physiol $x MED00005317
- LZP __
- $a Pubmed-20180515