-
Je něco špatně v tomto záznamu ?
Function of the Golgi-located phosphate transporter PHT4;6 is critical for senescence-associated processes in Arabidopsis
S. Hassler, B. Jung, L. Lemke, O. Novák, M. Strnad, E. Martinoia, HE. Neuhaus,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1996 do Před 1 rokem
Open Access Digital Library
od 1996-01-01
PubMed
27325894
DOI
10.1093/jxb/erw249
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis metabolismus fyziologie MeSH
- chlorofyl metabolismus MeSH
- cytokininy metabolismus MeSH
- Golgiho aparát metabolismus fyziologie MeSH
- proteiny huseníčku fyziologie MeSH
- proteiny přenášející fosfát fyziologie MeSH
- regulace genové exprese u rostlin fyziologie MeSH
- stárnutí fyziologie MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The phosphate transporter PHT4;6 locates to the trans-Golgi compartment, and its impaired activity causes altered intracellular phosphate compartmentation, leading to low cytosolic Pi levels, a blockage of Golgi-related processes such as protein glycosylation and hemicellulose biosynthesis, and a dwarf phenotype. However, it was unclear whether altered Pi homeostasis in pht4;6 mutants causes further cellular problems, typically associated with limited phosphate availability. Here we report that pht4;6 mutants exhibit a markedly increased disposition to induce dark-induced senescence. In control experiments, in which pht4;6 mutants and wild-type plants developed similarly, we confirmed that accelerated dark-induced senescence in mutants is not a 'pleiotropic' process associated with the dwarf phenotype. In fact, accelerated dark-induced senescence in pht4;6 mutants correlates strongly with increased levels of toxic NH4 (+) and higher sensitivity to ammonium, which probably contribute to the inability of pht4;6 mutants to recover from dark treatment. Experiments with modified levels of either salicylic acid (SA) or trans-zeatin (tZ) demonstrate that altered concentrations of these compounds in pht4;6 plants act as major cellular mediators for dark-induced senescence. This conclusion gained further support from the notion that the expression of the pht4;6 gene is, in contrast to genes coding for major phosphate importers, substantially induced by tZ. Taken together, our findings point to a critical function of PHT4;6 to control cellular phosphate levels, in particular the cytosolic Pi availability, required to energize plant primary metabolism for proper plant development. Phosphate and its allocation mediated by PHT4;6 is critical to prevent onset of dark-induced senescence.
Plant Biology University of Zürich Zürich Switzerland
Plant Physiology University of Kaiserslautern Erwin Schrödinger Str D 67653 Kaiserslautern Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18017196
- 003
- CZ-PrNML
- 005
- 20180515103158.0
- 007
- ta
- 008
- 180515s2016 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/jxb/erw249 $2 doi
- 035 __
- $a (PubMed)27325894
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Hassler, Sebastian $u Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany.
- 245 10
- $a Function of the Golgi-located phosphate transporter PHT4;6 is critical for senescence-associated processes in Arabidopsis / $c S. Hassler, B. Jung, L. Lemke, O. Novák, M. Strnad, E. Martinoia, HE. Neuhaus,
- 520 9_
- $a The phosphate transporter PHT4;6 locates to the trans-Golgi compartment, and its impaired activity causes altered intracellular phosphate compartmentation, leading to low cytosolic Pi levels, a blockage of Golgi-related processes such as protein glycosylation and hemicellulose biosynthesis, and a dwarf phenotype. However, it was unclear whether altered Pi homeostasis in pht4;6 mutants causes further cellular problems, typically associated with limited phosphate availability. Here we report that pht4;6 mutants exhibit a markedly increased disposition to induce dark-induced senescence. In control experiments, in which pht4;6 mutants and wild-type plants developed similarly, we confirmed that accelerated dark-induced senescence in mutants is not a 'pleiotropic' process associated with the dwarf phenotype. In fact, accelerated dark-induced senescence in pht4;6 mutants correlates strongly with increased levels of toxic NH4 (+) and higher sensitivity to ammonium, which probably contribute to the inability of pht4;6 mutants to recover from dark treatment. Experiments with modified levels of either salicylic acid (SA) or trans-zeatin (tZ) demonstrate that altered concentrations of these compounds in pht4;6 plants act as major cellular mediators for dark-induced senescence. This conclusion gained further support from the notion that the expression of the pht4;6 gene is, in contrast to genes coding for major phosphate importers, substantially induced by tZ. Taken together, our findings point to a critical function of PHT4;6 to control cellular phosphate levels, in particular the cytosolic Pi availability, required to energize plant primary metabolism for proper plant development. Phosphate and its allocation mediated by PHT4;6 is critical to prevent onset of dark-induced senescence.
- 650 _2
- $a stárnutí $x fyziologie $7 D000375
- 650 _2
- $a Arabidopsis $x metabolismus $x fyziologie $7 D017360
- 650 _2
- $a proteiny huseníčku $x fyziologie $7 D029681
- 650 _2
- $a chlorofyl $x metabolismus $7 D002734
- 650 _2
- $a cytokininy $x metabolismus $7 D003583
- 650 _2
- $a regulace genové exprese u rostlin $x fyziologie $7 D018506
- 650 _2
- $a Golgiho aparát $x metabolismus $x fyziologie $7 D006056
- 650 _2
- $a světlo $7 D008027
- 650 _2
- $a proteiny přenášející fosfát $x fyziologie $7 D028061
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Jung, Benjamin $u Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany.
- 700 1_
- $a Lemke, Lilia $u Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany.
- 700 1_
- $a Novák, Ondřej $u Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic.
- 700 1_
- $a Strnad, Miroslav $u Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic.
- 700 1_
- $a Martinoia, Enrico $u Plant Biology, University of Zürich, Zürich, Switzerland.
- 700 1_
- $a Neuhaus, H Ekkehard $u Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany neuhaus@rhrk.uni-kl.de.
- 773 0_
- $w MED00006559 $t Journal of experimental botany $x 1460-2431 $g Roč. 67, č. 15 (2016), s. 4671-84
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27325894 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180515103332 $b ABA008
- 999 __
- $a ok $b bmc $g 1300820 $s 1014036
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 67 $c 15 $d 4671-84 $e 20160620 $i 1460-2431 $m Journal of Experimental Botany $n J Exp Bot $x MED00006559
- LZP __
- $a Pubmed-20180515