Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Description of D-glucosamine immobilization kinetics onto poly(lactic acid) surface via a multistep physicochemical approach for preparation of novel active biomaterials

AE. Swilem, M. Lehocký, P. Humpolíček, Z. Kucekova, I. Novák, M. Mičušík, HA. Abd El-Rehim, EA. Hegazy, AA. Hamed, J. Kousal,

. 2017 ; 105 (11) : 3176-3188. [pub] 20170915

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18024841

Poly(lactic acid) (PLA) has shown much success in the preparation of tissue engineering scaffolds as it can be fabricated with a tailored architecture. However, the PLA surface has drawbacks including the lack of biofunctional motifs which are essential for high affinity to biological cells. Therefore, this study describes a multistep physicochemical approach for the immobilization of d-glucosamine (GlcN), a naturally occurring monosaccharide having many biological functions, on the PLA surface aiming at enhancing the cell proliferation activity. In this approach, poly(acrylic acid) (PAAc) spacer arms are first introduced into the PLA surface via plasma post-irradiation grafting technique. Then, covalent coupling or physical adsorption of GlcN with/on the PAAc spacer is carried out. Factors affecting the grafting yield are controlled to produce a suitable spacer for bioimmobilization. X-ray photon spectroscopic (XPS) analyses confirm the immobilization of GlcN on the PLA surface. The XPS results reveal also that increasing the yield of grafted PAAc spacer on the PLA surface increases the amount of covalently immobilized GlcN, but actually inhibits the immobilization process using the physical adsorption method. Contact angle measurements and atomic force microscopy (AFM) show a substantial increase of surface energy and roughness of PLA surface, respectively, upon the multistep modification procedure. The cytocompatibility of the modified surfaces is assessed using a mouse embryonic fibroblast (MEF) cell line. Observation from the cell culture basically demonstrates the potential of GlcN immobilization in improving the cytocompatibility of the PLA surface. Moreover, the covalent immobilization of GlcN seems to produce more cytocompatible surfaces if compared with the physical adsorption method. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3176-3188, 2017.

000      
00000naa a2200000 a 4500
001      
bmc18024841
003      
CZ-PrNML
005      
20180717082105.0
007      
ta
008      
180709s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/jbm.a.36158 $2 doi
035    __
$a (PubMed)28707422
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Swilem, Ahmed E $u Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, 760 01, Czech Republic. Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
245    10
$a Description of D-glucosamine immobilization kinetics onto poly(lactic acid) surface via a multistep physicochemical approach for preparation of novel active biomaterials / $c AE. Swilem, M. Lehocký, P. Humpolíček, Z. Kucekova, I. Novák, M. Mičušík, HA. Abd El-Rehim, EA. Hegazy, AA. Hamed, J. Kousal,
520    9_
$a Poly(lactic acid) (PLA) has shown much success in the preparation of tissue engineering scaffolds as it can be fabricated with a tailored architecture. However, the PLA surface has drawbacks including the lack of biofunctional motifs which are essential for high affinity to biological cells. Therefore, this study describes a multistep physicochemical approach for the immobilization of d-glucosamine (GlcN), a naturally occurring monosaccharide having many biological functions, on the PLA surface aiming at enhancing the cell proliferation activity. In this approach, poly(acrylic acid) (PAAc) spacer arms are first introduced into the PLA surface via plasma post-irradiation grafting technique. Then, covalent coupling or physical adsorption of GlcN with/on the PAAc spacer is carried out. Factors affecting the grafting yield are controlled to produce a suitable spacer for bioimmobilization. X-ray photon spectroscopic (XPS) analyses confirm the immobilization of GlcN on the PLA surface. The XPS results reveal also that increasing the yield of grafted PAAc spacer on the PLA surface increases the amount of covalently immobilized GlcN, but actually inhibits the immobilization process using the physical adsorption method. Contact angle measurements and atomic force microscopy (AFM) show a substantial increase of surface energy and roughness of PLA surface, respectively, upon the multistep modification procedure. The cytocompatibility of the modified surfaces is assessed using a mouse embryonic fibroblast (MEF) cell line. Observation from the cell culture basically demonstrates the potential of GlcN immobilization in improving the cytocompatibility of the PLA surface. Moreover, the covalent immobilization of GlcN seems to produce more cytocompatible surfaces if compared with the physical adsorption method. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3176-3188, 2017.
650    _2
$a adsorpce $7 D000327
650    _2
$a zvířata $7 D000818
650    _2
$a biokompatibilní materiály $x chemie $7 D001672
650    _2
$a buněčné linie $7 D002460
650    _2
$a proliferace buněk $7 D049109
650    _2
$a fibroblasty $x cytologie $7 D005347
650    _2
$a glukosamin $x chemie $7 D005944
650    _2
$a kinetika $7 D007700
650    _2
$a myši $7 D051379
650    _2
$a mikroskopie atomárních sil $7 D018625
650    _2
$a polyestery $x chemie $7 D011091
650    _2
$a povrchové vlastnosti $7 D013499
650    _2
$a tkáňové podpůrné struktury $x chemie $7 D054457
655    _2
$a časopisecké články $7 D016428
700    1_
$a Lehocký, Marian $u Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, 760 01, Czech Republic.
700    1_
$a Humpolíček, Petr $u Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, 760 01, Czech Republic.
700    1_
$a Kucekova, Zdenka $u Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, 760 01, Czech Republic.
700    1_
$a Novák, Igor $u Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia, 845 41.
700    1_
$a Mičušík, Matej $u Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia, 845 41.
700    1_
$a Abd El-Rehim, Hassan A $u Department of Polymers, National Center for Radiation Research and Technology, Atomic Energy Authority, Nasr City, Cairo, 11371, Egypt.
700    1_
$a Hegazy, El-Sayed A $u Department of Polymers, National Center for Radiation Research and Technology, Atomic Energy Authority, Nasr City, Cairo, 11371, Egypt.
700    1_
$a Hamed, Ashraf A $u Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
700    1_
$a Kousal, Jaroslav $u Faculty of Mathematics and Physics, Charles University Prague, V Holesovickach 2, Prague 8, 18000, Czech Republic.
773    0_
$w MED00007498 $t Journal of biomedical materials research. Part A $x 1552-4965 $g Roč. 105, č. 11 (2017), s. 3176-3188
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28707422 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180709 $b ABA008
991    __
$a 20180717082404 $b ABA008
999    __
$a ok $b bmc $g 1316972 $s 1021762
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 105 $c 11 $d 3176-3188 $e 20170915 $i 1552-4965 $m Journal of biomedical materials research. Part A $n J Biomed Mater Res $x MED00007498
LZP    __
$a Pubmed-20180709

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...