-
Je něco špatně v tomto záznamu ?
Heart sounds analysis using probability assessment
F. Plesinger, I. Viscor, J. Halamek, J. Jurco, P. Jurak,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
PubMed
28562368
DOI
10.1088/1361-6579/aa7620
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- počítačové zpracování signálu * MeSH
- pravděpodobnost MeSH
- software MeSH
- srdeční ozvy * MeSH
- umělá inteligence * MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: This paper describes a method for automated discrimination of heart sounds recordings according to the Physionet Challenge 2016. The goal was to decide if the recording refers to normal or abnormal heart sounds or if it is not possible to decide (i.e. 'unsure' recordings). APPROACH: Heart sounds S1 and S2 are detected using amplitude envelopes in the band 15-90 Hz. The averaged shape of the S1/S2 pair is computed from amplitude envelopes in five different bands (15-90 Hz; 55-150 Hz; 100-250 Hz; 200-450 Hz; 400-800 Hz). A total of 53 features are extracted from the data. The largest group of features is extracted from the statistical properties of the averaged shapes; other features are extracted from the symmetry of averaged shapes, and the last group of features is independent of S1 and S2 detection. Generated features are processed using logical rules and probability assessment, a prototype of a new machine-learning method. MAIN RESULTS: The method was trained using 3155 records and tested on 1277 hidden records. It resulted in a training score of 0.903 (sensitivity 0.869, specificity 0.937) and a testing score of 0.841 (sensitivity 0.770, specificity 0.913). The revised method led to a test score of 0.853 in the follow-up phase of the challenge. SIGNIFICANCE: The presented solution achieved 7th place out of 48 competing entries in the Physionet Challenge 2016 (official phase). In addition, the PROBAfind software for probability assessment was introduced.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18024976
- 003
- CZ-PrNML
- 005
- 20180718114928.0
- 007
- ta
- 008
- 180709s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1088/1361-6579/aa7620 $2 doi
- 035 __
- $a (PubMed)28562368
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Plesinger, F $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic.
- 245 10
- $a Heart sounds analysis using probability assessment / $c F. Plesinger, I. Viscor, J. Halamek, J. Jurco, P. Jurak,
- 520 9_
- $a OBJECTIVE: This paper describes a method for automated discrimination of heart sounds recordings according to the Physionet Challenge 2016. The goal was to decide if the recording refers to normal or abnormal heart sounds or if it is not possible to decide (i.e. 'unsure' recordings). APPROACH: Heart sounds S1 and S2 are detected using amplitude envelopes in the band 15-90 Hz. The averaged shape of the S1/S2 pair is computed from amplitude envelopes in five different bands (15-90 Hz; 55-150 Hz; 100-250 Hz; 200-450 Hz; 400-800 Hz). A total of 53 features are extracted from the data. The largest group of features is extracted from the statistical properties of the averaged shapes; other features are extracted from the symmetry of averaged shapes, and the last group of features is independent of S1 and S2 detection. Generated features are processed using logical rules and probability assessment, a prototype of a new machine-learning method. MAIN RESULTS: The method was trained using 3155 records and tested on 1277 hidden records. It resulted in a training score of 0.903 (sensitivity 0.869, specificity 0.937) and a testing score of 0.841 (sensitivity 0.770, specificity 0.913). The revised method led to a test score of 0.853 in the follow-up phase of the challenge. SIGNIFICANCE: The presented solution achieved 7th place out of 48 competing entries in the Physionet Challenge 2016 (official phase). In addition, the PROBAfind software for probability assessment was introduced.
- 650 _2
- $a algoritmy $7 D000465
- 650 12
- $a umělá inteligence $7 D001185
- 650 12
- $a srdeční ozvy $7 D006347
- 650 _2
- $a pravděpodobnost $7 D011336
- 650 12
- $a počítačové zpracování signálu $7 D012815
- 650 _2
- $a software $7 D012984
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Viscor, I
- 700 1_
- $a Halamek, J
- 700 1_
- $a Jurco, J
- 700 1_
- $a Jurak, P
- 773 0_
- $w MED00181057 $t Physiological measurement $x 1361-6579 $g Roč. 38, č. 8 (2017), s. 1685-1700
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28562368 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180709 $b ABA008
- 991 __
- $a 20180718115226 $b ABA008
- 999 __
- $a ok $b bmc $g 1317107 $s 1021897
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 38 $c 8 $d 1685-1700 $e 20170731 $i 1361-6579 $m Physiological measurement $n Physiol Meas $x MED00181057
- LZP __
- $a Pubmed-20180709