• Je něco špatně v tomto záznamu ?

Heart sounds analysis using probability assessment

F. Plesinger, I. Viscor, J. Halamek, J. Jurco, P. Jurak,

. 2017 ; 38 (8) : 1685-1700. [pub] 20170731

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18024976

OBJECTIVE: This paper describes a method for automated discrimination of heart sounds recordings according to the Physionet Challenge 2016. The goal was to decide if the recording refers to normal or abnormal heart sounds or if it is not possible to decide (i.e. 'unsure' recordings). APPROACH: Heart sounds S1 and S2 are detected using amplitude envelopes in the band 15-90 Hz. The averaged shape of the S1/S2 pair is computed from amplitude envelopes in five different bands (15-90 Hz; 55-150 Hz; 100-250 Hz; 200-450 Hz; 400-800 Hz). A total of 53 features are extracted from the data. The largest group of features is extracted from the statistical properties of the averaged shapes; other features are extracted from the symmetry of averaged shapes, and the last group of features is independent of S1 and S2 detection. Generated features are processed using logical rules and probability assessment, a prototype of a new machine-learning method. MAIN RESULTS: The method was trained using 3155 records and tested on 1277 hidden records. It resulted in a training score of 0.903 (sensitivity 0.869, specificity 0.937) and a testing score of 0.841 (sensitivity 0.770, specificity 0.913). The revised method led to a test score of 0.853 in the follow-up phase of the challenge. SIGNIFICANCE: The presented solution achieved 7th place out of 48 competing entries in the Physionet Challenge 2016 (official phase). In addition, the PROBAfind software for probability assessment was introduced.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18024976
003      
CZ-PrNML
005      
20180718114928.0
007      
ta
008      
180709s2017 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1361-6579/aa7620 $2 doi
035    __
$a (PubMed)28562368
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Plesinger, F $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic.
245    10
$a Heart sounds analysis using probability assessment / $c F. Plesinger, I. Viscor, J. Halamek, J. Jurco, P. Jurak,
520    9_
$a OBJECTIVE: This paper describes a method for automated discrimination of heart sounds recordings according to the Physionet Challenge 2016. The goal was to decide if the recording refers to normal or abnormal heart sounds or if it is not possible to decide (i.e. 'unsure' recordings). APPROACH: Heart sounds S1 and S2 are detected using amplitude envelopes in the band 15-90 Hz. The averaged shape of the S1/S2 pair is computed from amplitude envelopes in five different bands (15-90 Hz; 55-150 Hz; 100-250 Hz; 200-450 Hz; 400-800 Hz). A total of 53 features are extracted from the data. The largest group of features is extracted from the statistical properties of the averaged shapes; other features are extracted from the symmetry of averaged shapes, and the last group of features is independent of S1 and S2 detection. Generated features are processed using logical rules and probability assessment, a prototype of a new machine-learning method. MAIN RESULTS: The method was trained using 3155 records and tested on 1277 hidden records. It resulted in a training score of 0.903 (sensitivity 0.869, specificity 0.937) and a testing score of 0.841 (sensitivity 0.770, specificity 0.913). The revised method led to a test score of 0.853 in the follow-up phase of the challenge. SIGNIFICANCE: The presented solution achieved 7th place out of 48 competing entries in the Physionet Challenge 2016 (official phase). In addition, the PROBAfind software for probability assessment was introduced.
650    _2
$a algoritmy $7 D000465
650    12
$a umělá inteligence $7 D001185
650    12
$a srdeční ozvy $7 D006347
650    _2
$a pravděpodobnost $7 D011336
650    12
$a počítačové zpracování signálu $7 D012815
650    _2
$a software $7 D012984
655    _2
$a časopisecké články $7 D016428
700    1_
$a Viscor, I
700    1_
$a Halamek, J
700    1_
$a Jurco, J
700    1_
$a Jurak, P
773    0_
$w MED00181057 $t Physiological measurement $x 1361-6579 $g Roč. 38, č. 8 (2017), s. 1685-1700
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28562368 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180709 $b ABA008
991    __
$a 20180718115226 $b ABA008
999    __
$a ok $b bmc $g 1317107 $s 1021897
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 38 $c 8 $d 1685-1700 $e 20170731 $i 1361-6579 $m Physiological measurement $n Physiol Meas $x MED00181057
LZP    __
$a Pubmed-20180709

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace