-
Je něco špatně v tomto záznamu ?
QSAR – Modelování kvantitativních vztahů mezi strukturou a aktivitou chemických látek
[QSAR – Modelling of Quantitative Relations between Structure and Activity of Chemical Compounds]
C. Škuta, D. Svozil
Jazyk čeština Země Česko
Typ dokumentu práce podpořená grantem, přehledy
- Klíčová slova
- virtuální screening,
- MeSH
- databáze jako téma MeSH
- kvantitativní vztahy mezi strukturou a aktivitou * MeSH
- počítačová simulace MeSH
- racionální návrh léčiv MeSH
- strojové učení MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
Quantitative structure–activity relationship (QSAR) modelling is one of the most popular techniques of virtual screening used to predict the activity of a compound toward a biological target. While QSAR classification models are able to predict whether a compound is active or inactive (class) toward a target, regression models try to predict its exact activity value. To find the relationship between the structure and activity of a compound, common machine learning methods are employed (e.g., Support Vector Machines, Random Forest, Neural Networks etc.) together with diverse types of compound descriptors (e.g., physico-chemical properties, structural keys, binary fingerprints etc.). QSAR models are generally very fast and, when a correct approach to their validation and applicability domain setting is used, also reliable. They became a common part of computational drug design workflows employed to detect new drug candidates, elucidate their side/adverse effects or assess their potential toxicity risks.
QSAR – Modelling of Quantitative Relations between Structure and Activity of Chemical Compounds
Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18025640
- 003
- CZ-PrNML
- 005
- 20180717094512.0
- 007
- ta
- 008
- 180712s2017 xr f 000 0|cze||
- 009
- AR
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a cze $b eng
- 044 __
- $a xr
- 100 1_
- $a Škuta, Ctibor $7 js20100408002 $u CZ-OPENSCREEN: Národní infrastruktura pro chemickou biologii, Ústav molekulární genetiky AV ČR v.v.i., Praha
- 245 00
- $a QSAR – Modelování kvantitativních vztahů mezi strukturou a aktivitou chemických látek / $c C. Škuta, D. Svozil
- 246 31
- $a QSAR – Modelling of Quantitative Relations between Structure and Activity of Chemical Compounds
- 504 __
- $a Literatura
- 520 3_
- $a Quantitative structure–activity relationship (QSAR) modelling is one of the most popular techniques of virtual screening used to predict the activity of a compound toward a biological target. While QSAR classification models are able to predict whether a compound is active or inactive (class) toward a target, regression models try to predict its exact activity value. To find the relationship between the structure and activity of a compound, common machine learning methods are employed (e.g., Support Vector Machines, Random Forest, Neural Networks etc.) together with diverse types of compound descriptors (e.g., physico-chemical properties, structural keys, binary fingerprints etc.). QSAR models are generally very fast and, when a correct approach to their validation and applicability domain setting is used, also reliable. They became a common part of computational drug design workflows employed to detect new drug candidates, elucidate their side/adverse effects or assess their potential toxicity risks.
- 650 12
- $a kvantitativní vztahy mezi strukturou a aktivitou $7 D021281
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a racionální návrh léčiv $7 D015195
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a databáze jako téma $7 D019992
- 653 00
- $a virtuální screening
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Svozil, Daniel, $d 1971- $7 xx0145391 $u CZ-OPENSCREEN: Národní infrastruktura pro chemickou biologii, Ústav molekulární genetiky AV ČR v.v.i., Praha; CZ-OPENSCREEN: Národní infrastruktura pro chemickou biologii, Laboratoř informatiky a chemie, Fakulta chemické technologie, Vysoká škola chemicko-technologická v Praze, Praha
- 773 0_
- $t Chemické listy $x 0009-2770 $g Roč. 111, č. 11 (2017), s. 747-753 $w MED00011010
- 856 41
- $u http://www.chemicke-listy.cz/ojs3/index.php/chemicke-listy/article/view/2815/2802 $y domovská stránka časopisu
- 910 __
- $a ABA008 $b B 1918 $c 395 $y 4 $z 0
- 990 __
- $a 20171212100755 $b ABA008
- 991 __
- $a 20180717094812 $b ABA008
- 999 __
- $a ok $b bmc $g 1318028 $s 1022562
- BAS __
- $a 3
- BMC __
- $a 2017 $b 111 $c 11 $d 747-753 $i 0009-2770 $m Chemické listy $n Chem. Listy $x MED00011010
- LZP __
- $c NLK185 $d 20180717 $a NLK 2017-50/dk