Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

QSAR – Modelování kvantitativních vztahů mezi strukturou a aktivitou chemických látek
[QSAR – Modelling of Quantitative Relations between Structure and Activity of Chemical Compounds]

C. Škuta, D. Svozil

. 2017 ; 111 (11) : 747-753.

Jazyk čeština Země Česko

Typ dokumentu práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc18025640

Quantitative structure–activity relationship (QSAR) modelling is one of the most popular techniques of virtual screening used to predict the activity of a compound toward a biological target. While QSAR classification models are able to predict whether a compound is active or inactive (class) toward a target, regression models try to predict its exact activity value. To find the relationship between the structure and activity of a compound, common machine learning methods are employed (e.g., Support Vector Machines, Random Forest, Neural Networks etc.) together with diverse types of compound descriptors (e.g., physico-chemical properties, structural keys, binary fingerprints etc.). QSAR models are generally very fast and, when a correct approach to their validation and applicability domain setting is used, also reliable. They became a common part of computational drug design workflows employed to detect new drug candidates, elucidate their side/adverse effects or assess their potential toxicity risks.

QSAR – Modelling of Quantitative Relations between Structure and Activity of Chemical Compounds

Bibliografie atd.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc18025640
003      
CZ-PrNML
005      
20180717094512.0
007      
ta
008      
180712s2017 xr f 000 0|cze||
009      
AR
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a cze $b eng
044    __
$a xr
100    1_
$a Škuta, Ctibor $7 js20100408002 $u CZ-OPENSCREEN: Národní infrastruktura pro chemickou biologii, Ústav molekulární genetiky AV ČR v.v.i., Praha
245    00
$a QSAR – Modelování kvantitativních vztahů mezi strukturou a aktivitou chemických látek / $c C. Škuta, D. Svozil
246    31
$a QSAR – Modelling of Quantitative Relations between Structure and Activity of Chemical Compounds
504    __
$a Literatura
520    3_
$a Quantitative structure–activity relationship (QSAR) modelling is one of the most popular techniques of virtual screening used to predict the activity of a compound toward a biological target. While QSAR classification models are able to predict whether a compound is active or inactive (class) toward a target, regression models try to predict its exact activity value. To find the relationship between the structure and activity of a compound, common machine learning methods are employed (e.g., Support Vector Machines, Random Forest, Neural Networks etc.) together with diverse types of compound descriptors (e.g., physico-chemical properties, structural keys, binary fingerprints etc.). QSAR models are generally very fast and, when a correct approach to their validation and applicability domain setting is used, also reliable. They became a common part of computational drug design workflows employed to detect new drug candidates, elucidate their side/adverse effects or assess their potential toxicity risks.
650    12
$a kvantitativní vztahy mezi strukturou a aktivitou $7 D021281
650    _2
$a počítačová simulace $7 D003198
650    _2
$a racionální návrh léčiv $7 D015195
650    _2
$a strojové učení $7 D000069550
650    _2
$a databáze jako téma $7 D019992
653    00
$a virtuální screening
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Svozil, Daniel, $d 1971- $7 xx0145391 $u CZ-OPENSCREEN: Národní infrastruktura pro chemickou biologii, Ústav molekulární genetiky AV ČR v.v.i., Praha; CZ-OPENSCREEN: Národní infrastruktura pro chemickou biologii, Laboratoř informatiky a chemie, Fakulta chemické technologie, Vysoká škola chemicko-technologická v Praze, Praha
773    0_
$t Chemické listy $x 0009-2770 $g Roč. 111, č. 11 (2017), s. 747-753 $w MED00011010
856    41
$u http://www.chemicke-listy.cz/ojs3/index.php/chemicke-listy/article/view/2815/2802 $y domovská stránka časopisu
910    __
$a ABA008 $b B 1918 $c 395 $y 4 $z 0
990    __
$a 20171212100755 $b ABA008
991    __
$a 20180717094812 $b ABA008
999    __
$a ok $b bmc $g 1318028 $s 1022562
BAS    __
$a 3
BMC    __
$a 2017 $b 111 $c 11 $d 747-753 $i 0009-2770 $m Chemické listy $n Chem. Listy $x MED00011010
LZP    __
$c NLK185 $d 20180717 $a NLK 2017-50/dk

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...