Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Big data, biostatistics and complexity reduction

Jan Kalina

. 2018 ; 14 (2) : 24-32.

Language English Country Czech Republic

Document type Research Support, Non-U.S. Gov't

The aim of this paper is to overview challenges and principles of Big Data analysis in biomedicine. Recent multivariate statistical approaches to complexity reduction represent a useful (and often irreplaceable) methodology allowing performing a reliable Big Data analysis. Attention is paid to principal component analysis, partial least squares, and variable selection based on maximizing conditional entropy. Some important problems as well as ideas of complexity reduction are illustrated on examples from biomedical research tasks. These include high-dimensional data in the form of facial images or gene expression measurements from a cardiovascular genetic study.

References provided by Crossref.org

Jana Zvárová Memorial Conference, 4 May 2018 in Prague

Bibliography, etc.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc18026517
003      
CZ-PrNML
005      
20200329220930.0
007      
cr|cn|
008      
180724s2018 xr da fs 000 0|eng||
009      
eAR
024    7_
$a 10.24105/ejbi.2018.14.2.5 $2 doi
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xr
100    1_
$a Kalina, Jan, $d 1977- $7 xx0207698 $u Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
245    10
$a Big data, biostatistics and complexity reduction / $c Jan Kalina
500    __
$a Jana Zvárová Memorial Conference, 4 May 2018 in Prague
504    __
$a Literatura
520    9_
$a The aim of this paper is to overview challenges and principles of Big Data analysis in biomedicine. Recent multivariate statistical approaches to complexity reduction represent a useful (and often irreplaceable) methodology allowing performing a reliable Big Data analysis. Attention is paid to principal component analysis, partial least squares, and variable selection based on maximizing conditional entropy. Some important problems as well as ideas of complexity reduction are illustrated on examples from biomedical research tasks. These include high-dimensional data in the form of facial images or gene expression measurements from a cardiovascular genetic study.
650    12
$a biostatistika $x metody $7 D056808
650    _2
$a analýza dat $7 D000078332
650    _2
$a analýza hlavních komponent $x metody $7 D025341
650    _2
$a kardiovaskulární nemoci $x genetika $x prevence a kontrola $7 D002318
650    _2
$a riziko $7 D012306
650    _2
$a rozpoznání obličeje $7 D000066499
650    _2
$a systémy pro podporu klinického rozhodování $7 D020000
650    _2
$a metoda nejmenších čtverců $7 D016018
650    _2
$a lidé $7 D006801
650    12
$a big data $7 D000077558
655    _2
$a práce podpořená grantem $7 D013485
773    0_
$t European journal for biomedical informatics $x 1801-5603 $g Roč. 14, č. 2 (2018), s. 24-32 $w MED00173462
856    41
$u http://www.ejbi.org/ $y domovská stránka časopisu - plný text volně přístupný
910    __
$a ABA008 $b online $y p $z 0
990    __
$a 20180723130211 $b ABA008
991    __
$a 20200329221401 $b ABA008
999    __
$a ok $b bmc $g 1320738 $s 1023447
BAS    __
$a 3 $a 4
BMC    __
$a 2018 $b 14 $c 2 $d 24-32 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
LZP    __
$c NLK189 $d 20200328 $a NLK 2018-14/vt

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...