-
Something wrong with this record ?
Big data, biostatistics and complexity reduction
Jan Kalina
Language English Country Czech Republic
Document type Research Support, Non-U.S. Gov't
- MeSH
- Data Analysis MeSH
- Principal Component Analysis methods MeSH
- Big Data * MeSH
- Biostatistics * methods MeSH
- Cardiovascular Diseases genetics prevention & control MeSH
- Humans MeSH
- Least-Squares Analysis MeSH
- Risk MeSH
- Facial Recognition MeSH
- Decision Support Systems, Clinical MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
The aim of this paper is to overview challenges and principles of Big Data analysis in biomedicine. Recent multivariate statistical approaches to complexity reduction represent a useful (and often irreplaceable) methodology allowing performing a reliable Big Data analysis. Attention is paid to principal component analysis, partial least squares, and variable selection based on maximizing conditional entropy. Some important problems as well as ideas of complexity reduction are illustrated on examples from biomedical research tasks. These include high-dimensional data in the form of facial images or gene expression measurements from a cardiovascular genetic study.
References provided by Crossref.org
Jana Zvárová Memorial Conference, 4 May 2018 in Prague
Bibliography, etc.Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18026517
- 003
- CZ-PrNML
- 005
- 20200329220930.0
- 007
- cr|cn|
- 008
- 180724s2018 xr da fs 000 0|eng||
- 009
- eAR
- 024 7_
- $a 10.24105/ejbi.2018.14.2.5 $2 doi
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Kalina, Jan, $d 1977- $7 xx0207698 $u Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
- 245 10
- $a Big data, biostatistics and complexity reduction / $c Jan Kalina
- 500 __
- $a Jana Zvárová Memorial Conference, 4 May 2018 in Prague
- 504 __
- $a Literatura
- 520 9_
- $a The aim of this paper is to overview challenges and principles of Big Data analysis in biomedicine. Recent multivariate statistical approaches to complexity reduction represent a useful (and often irreplaceable) methodology allowing performing a reliable Big Data analysis. Attention is paid to principal component analysis, partial least squares, and variable selection based on maximizing conditional entropy. Some important problems as well as ideas of complexity reduction are illustrated on examples from biomedical research tasks. These include high-dimensional data in the form of facial images or gene expression measurements from a cardiovascular genetic study.
- 650 12
- $a biostatistika $x metody $7 D056808
- 650 _2
- $a analýza dat $7 D000078332
- 650 _2
- $a analýza hlavních komponent $x metody $7 D025341
- 650 _2
- $a kardiovaskulární nemoci $x genetika $x prevence a kontrola $7 D002318
- 650 _2
- $a riziko $7 D012306
- 650 _2
- $a rozpoznání obličeje $7 D000066499
- 650 _2
- $a systémy pro podporu klinického rozhodování $7 D020000
- 650 _2
- $a metoda nejmenších čtverců $7 D016018
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a big data $7 D000077558
- 655 _2
- $a práce podpořená grantem $7 D013485
- 773 0_
- $t European journal for biomedical informatics $x 1801-5603 $g Roč. 14, č. 2 (2018), s. 24-32 $w MED00173462
- 856 41
- $u http://www.ejbi.org/ $y domovská stránka časopisu - plný text volně přístupný
- 910 __
- $a ABA008 $b online $y p $z 0
- 990 __
- $a 20180723130211 $b ABA008
- 991 __
- $a 20200329221401 $b ABA008
- 999 __
- $a ok $b bmc $g 1320738 $s 1023447
- BAS __
- $a 3 $a 4
- BMC __
- $a 2018 $b 14 $c 2 $d 24-32 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
- LZP __
- $c NLK189 $d 20200328 $a NLK 2018-14/vt