Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Permutation Entropy and Signal Energy Increase the Accuracy of Neuropathic Change Detection in Needle EMG

O. Dostál, O. Vysata, L. Pazdera, A. Procházka, J. Kopal, J. Kuchyňka, M. Vališ,

. 2018 ; 2018 (-) : 5276161. [pub] 20180124

Language English Country United States

Document type Journal Article

Background and Objective. Needle electromyography can be used to detect the number of changes and morphological changes in motor unit potentials of patients with axonal neuropathy. General mathematical methods of pattern recognition and signal analysis were applied to recognize neuropathic changes. This study validates the possibility of extending and refining turns-amplitude analysis using permutation entropy and signal energy. Methods. In this study, we examined needle electromyography in 40 neuropathic individuals and 40 controls. The number of turns, amplitude between turns, signal energy, and "permutation entropy" were used as features for support vector machine classification. Results. The obtained results proved the superior classification performance of the combinations of all of the above-mentioned features compared to the combinations of fewer features. The lowest accuracy from the tested combinations of features had peak-ratio analysis. Conclusion. Using the combination of permutation entropy with signal energy, number of turns and mean amplitude in SVM classification can be used to refine the diagnosis of polyneuropathies examined by needle electromyography.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033202
003      
CZ-PrNML
005      
20240418091606.0
007      
ta
008      
181008e20180124xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1155/2018/5276161 $2 doi
035    __
$a (PubMed)29606959
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Dostál, Ondřej $u Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská Street 581, 500 05 Hradec Králové, Czech Republic. $7 xx0316377
245    10
$a Permutation Entropy and Signal Energy Increase the Accuracy of Neuropathic Change Detection in Needle EMG / $c O. Dostál, O. Vysata, L. Pazdera, A. Procházka, J. Kopal, J. Kuchyňka, M. Vališ,
520    9_
$a Background and Objective. Needle electromyography can be used to detect the number of changes and morphological changes in motor unit potentials of patients with axonal neuropathy. General mathematical methods of pattern recognition and signal analysis were applied to recognize neuropathic changes. This study validates the possibility of extending and refining turns-amplitude analysis using permutation entropy and signal energy. Methods. In this study, we examined needle electromyography in 40 neuropathic individuals and 40 controls. The number of turns, amplitude between turns, signal energy, and "permutation entropy" were used as features for support vector machine classification. Results. The obtained results proved the superior classification performance of the combinations of all of the above-mentioned features compared to the combinations of fewer features. The lowest accuracy from the tested combinations of features had peak-ratio analysis. Conclusion. Using the combination of permutation entropy with signal energy, number of turns and mean amplitude in SVM classification can be used to refine the diagnosis of polyneuropathies examined by needle electromyography.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    12
$a algoritmy $7 D000465
650    12
$a elektromyografie $7 D004576
650    _2
$a entropie $7 D019277
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a nemoci periferního nervového systému $x patofyziologie $7 D010523
650    12
$a počítačové zpracování signálu $7 D012815
650    12
$a support vector machine $7 D060388
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
700    1_
$a Vysata, O $u Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská Street 581, 500 05 Hradec Králové, Czech Republic. Department of Computing and Control Engineering, Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic.
700    1_
$a Pazdera, L $u Neurocenter Caregroup, Ltd., Jiráskova 1389, Rychnov nad Kněžnou, Czech Republic.
700    1_
$a Procházka, A $u Department of Computing and Control Engineering, Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic.
700    1_
$a Kopal, J $u Department of Computing and Control Engineering, Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic.
700    1_
$a Kuchyňka, J $u Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská Street 581, 500 05 Hradec Králové, Czech Republic.
700    1_
$a Vališ, M $u Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská Street 581, 500 05 Hradec Králové, Czech Republic.
773    0_
$w MED00163305 $t Computational intelligence and neuroscience $x 1687-5273 $g Roč. 2018 (20180124), s. 5276161
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29606959 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20240418091600 $b ABA008
999    __
$a ok $b bmc $g 1339391 $s 1030196
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 2018 $c - $d 5276161 $e 20180124 $i 1687-5273 $m Computational intelligence and neuroscience $n Comput Intell Neurosci $x MED00163305
LZP    __
$a Pubmed-20181008

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...