-
Something wrong with this record ?
Permutation Entropy and Signal Energy Increase the Accuracy of Neuropathic Change Detection in Needle EMG
O. Dostál, O. Vysata, L. Pazdera, A. Procházka, J. Kopal, J. Kuchyňka, M. Vališ,
Language English Country United States
Document type Journal Article
NLK
Free Medical Journals
from 2007
PubMed Central
from 2007
Europe PubMed Central
from 2007
ProQuest Central
from 2008-01-01 to 2025-01-31
Open Access Digital Library
from 2007-01-01
Open Access Digital Library
from 2007-01-01
Open Access Digital Library
from 2007-06-25
Medline Complete (EBSCOhost)
from 2007-01-01 to 2023-06-28
Health & Medicine (ProQuest)
from 2008-01-01 to 2025-01-31
Wiley-Blackwell Open Access Titles
from 2007
PubMed
29606959
DOI
10.1155/2018/5276161
Knihovny.cz E-resources
- MeSH
- Algorithms * MeSH
- Adult MeSH
- Electromyography * MeSH
- Entropy MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Peripheral Nervous System Diseases physiopathology MeSH
- Signal Processing, Computer-Assisted * MeSH
- Aged MeSH
- Support Vector Machine * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Background and Objective. Needle electromyography can be used to detect the number of changes and morphological changes in motor unit potentials of patients with axonal neuropathy. General mathematical methods of pattern recognition and signal analysis were applied to recognize neuropathic changes. This study validates the possibility of extending and refining turns-amplitude analysis using permutation entropy and signal energy. Methods. In this study, we examined needle electromyography in 40 neuropathic individuals and 40 controls. The number of turns, amplitude between turns, signal energy, and "permutation entropy" were used as features for support vector machine classification. Results. The obtained results proved the superior classification performance of the combinations of all of the above-mentioned features compared to the combinations of fewer features. The lowest accuracy from the tested combinations of features had peak-ratio analysis. Conclusion. Using the combination of permutation entropy with signal energy, number of turns and mean amplitude in SVM classification can be used to refine the diagnosis of polyneuropathies examined by needle electromyography.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18033202
- 003
- CZ-PrNML
- 005
- 20240418091606.0
- 007
- ta
- 008
- 181008e20180124xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1155/2018/5276161 $2 doi
- 035 __
- $a (PubMed)29606959
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Dostál, Ondřej $u Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská Street 581, 500 05 Hradec Králové, Czech Republic. $7 xx0316377
- 245 10
- $a Permutation Entropy and Signal Energy Increase the Accuracy of Neuropathic Change Detection in Needle EMG / $c O. Dostál, O. Vysata, L. Pazdera, A. Procházka, J. Kopal, J. Kuchyňka, M. Vališ,
- 520 9_
- $a Background and Objective. Needle electromyography can be used to detect the number of changes and morphological changes in motor unit potentials of patients with axonal neuropathy. General mathematical methods of pattern recognition and signal analysis were applied to recognize neuropathic changes. This study validates the possibility of extending and refining turns-amplitude analysis using permutation entropy and signal energy. Methods. In this study, we examined needle electromyography in 40 neuropathic individuals and 40 controls. The number of turns, amplitude between turns, signal energy, and "permutation entropy" were used as features for support vector machine classification. Results. The obtained results proved the superior classification performance of the combinations of all of the above-mentioned features compared to the combinations of fewer features. The lowest accuracy from the tested combinations of features had peak-ratio analysis. Conclusion. Using the combination of permutation entropy with signal energy, number of turns and mean amplitude in SVM classification can be used to refine the diagnosis of polyneuropathies examined by needle electromyography.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a senioři $7 D000368
- 650 12
- $a algoritmy $7 D000465
- 650 12
- $a elektromyografie $7 D004576
- 650 _2
- $a entropie $7 D019277
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a nemoci periferního nervového systému $x patofyziologie $7 D010523
- 650 12
- $a počítačové zpracování signálu $7 D012815
- 650 12
- $a support vector machine $7 D060388
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Vysata, O $u Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská Street 581, 500 05 Hradec Králové, Czech Republic. Department of Computing and Control Engineering, Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic.
- 700 1_
- $a Pazdera, L $u Neurocenter Caregroup, Ltd., Jiráskova 1389, Rychnov nad Kněžnou, Czech Republic.
- 700 1_
- $a Procházka, A $u Department of Computing and Control Engineering, Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic.
- 700 1_
- $a Kopal, J $u Department of Computing and Control Engineering, Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic.
- 700 1_
- $a Kuchyňka, J $u Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská Street 581, 500 05 Hradec Králové, Czech Republic.
- 700 1_
- $a Vališ, M $u Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská Street 581, 500 05 Hradec Králové, Czech Republic.
- 773 0_
- $w MED00163305 $t Computational intelligence and neuroscience $x 1687-5273 $g Roč. 2018 (20180124), s. 5276161
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29606959 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20181008 $b ABA008
- 991 __
- $a 20240418091600 $b ABA008
- 999 __
- $a ok $b bmc $g 1339391 $s 1030196
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 2018 $c - $d 5276161 $e 20180124 $i 1687-5273 $m Computational intelligence and neuroscience $n Comput Intell Neurosci $x MED00163305
- LZP __
- $a Pubmed-20181008