• Je něco špatně v tomto záznamu ?

The CS algorithm: A novel method for high frequency oscillation detection in EEG

J. Cimbálník, A. Hewitt, G. Worrell, M. Stead,

. 2018 ; 293 (-) : 6-16. [pub] 20170830

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033750

BACKGROUND: High frequency oscillations (HFOs) are emerging as potentially clinically important biomarkers for localizing seizure generating regions in epileptic brain. These events, however, are too frequent, and occur on too small a time scale to be identified quickly or reliably by human reviewers. Many of the deficiencies of the HFO detection algorithms published to date are addressed by the CS algorithm presented here. NEW METHOD: The algorithm employs novel methods for: 1) normalization; 2) storage of parameters to model human expertise; 3) differentiating highly localized oscillations from filtering phenomena; and 4) defining temporal extents of detected events. RESULTS: Receiver-operator characteristic curves demonstrate very low false positive rates with concomitantly high true positive rates over a large range of detector thresholds. The temporal resolution is shown to be +/-∼5ms for event boundaries. Computational efficiency is sufficient for use in a clinical setting. COMPARISON WITH EXISTING METHODS: The algorithm performance is directly compared to two established algorithms by Staba (2002) and Gardner (2007). Comparison with all published algorithms is beyond the scope of this work, but the features of all are discussed. All code and example data sets are freely available. CONCLUSIONS: The algorithm is shown to have high sensitivity and specificity for HFOs, be robust to common forms of artifact in EEG, and have performance adequate for use in a clinical setting.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033750
003      
CZ-PrNML
005      
20181024150007.0
007      
ta
008      
181008s2018 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jneumeth.2017.08.023 $2 doi
035    __
$a (PubMed)28860077
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Cimbálník, Jan $u Mayo Systems Electrophysiology Laboratory, Mayo Clinic, Rochester, MN, USA; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
245    14
$a The CS algorithm: A novel method for high frequency oscillation detection in EEG / $c J. Cimbálník, A. Hewitt, G. Worrell, M. Stead,
520    9_
$a BACKGROUND: High frequency oscillations (HFOs) are emerging as potentially clinically important biomarkers for localizing seizure generating regions in epileptic brain. These events, however, are too frequent, and occur on too small a time scale to be identified quickly or reliably by human reviewers. Many of the deficiencies of the HFO detection algorithms published to date are addressed by the CS algorithm presented here. NEW METHOD: The algorithm employs novel methods for: 1) normalization; 2) storage of parameters to model human expertise; 3) differentiating highly localized oscillations from filtering phenomena; and 4) defining temporal extents of detected events. RESULTS: Receiver-operator characteristic curves demonstrate very low false positive rates with concomitantly high true positive rates over a large range of detector thresholds. The temporal resolution is shown to be +/-∼5ms for event boundaries. Computational efficiency is sufficient for use in a clinical setting. COMPARISON WITH EXISTING METHODS: The algorithm performance is directly compared to two established algorithms by Staba (2002) and Gardner (2007). Comparison with all published algorithms is beyond the scope of this work, but the features of all are discussed. All code and example data sets are freely available. CONCLUSIONS: The algorithm is shown to have high sensitivity and specificity for HFOs, be robust to common forms of artifact in EEG, and have performance adequate for use in a clinical setting.
650    12
$a algoritmy $7 D000465
650    _2
$a zvířata $7 D000818
650    _2
$a artefakty $7 D016477
650    _2
$a mozek $x fyziologie $x patofyziologie $7 D001921
650    _2
$a psi $7 D004285
650    _2
$a elektroencefalografie $x metody $7 D004569
650    _2
$a epilepsie $x diagnóza $x patofyziologie $7 D004827
650    _2
$a falešně pozitivní reakce $7 D005189
650    _2
$a lidé $7 D006801
650    _2
$a ROC křivka $7 D012372
650    _2
$a hlodavci $7 D012377
650    _2
$a počítačové zpracování signálu $7 D012815
650    _2
$a časové faktory $7 D013997
655    _2
$a časopisecké články $7 D016428
700    1_
$a Hewitt, Angela $u Mayo Systems Electrophysiology Laboratory, Mayo Clinic, Rochester, MN, USA.
700    1_
$a Worrell, Greg $u Mayo Systems Electrophysiology Laboratory, Mayo Clinic, Rochester, MN, USA.
700    1_
$a Stead, Matt $u Mayo Systems Electrophysiology Laboratory, Mayo Clinic, Rochester, MN, USA. Electronic address: mattstead@me.com.
773    0_
$w MED00002841 $t Journal of neuroscience methods $x 1872-678X $g Roč. 293, č. - (2018), s. 6-16
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28860077 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181024150516 $b ABA008
999    __
$a ok $b bmc $g 1339579 $s 1030744
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 293 $c - $d 6-16 $e 20170830 $i 1872-678X $m Journal of neuroscience methods $n J Neurosci Methods $x MED00002841
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...