• Je něco špatně v tomto záznamu ?

Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming

A. D'Alessandro, KC. El Kasmi, L. Plecitá-Hlavatá, P. Ježek, M. Li, H. Zhang, SA. Gupte, KR. Stenmark,

. 2018 ; 28 (3) : 230-250. [pub] 20170814

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033857

SIGNIFICANCE: The molecular events that promote the development of pulmonary hypertension (PH) are complex and incompletely understood. The complex interplay between the pulmonary vasculature and its immediate microenvironment involving cells of immune system (i.e., macrophages) promotes a persistent inflammatory state, pathological angiogenesis, and fibrosis that are driven by metabolic reprogramming of mesenchymal and immune cells. Recent Advancements: Consistent with previous findings in the field of cancer metabolism, increased glycolytic rates, incomplete glucose and glutamine oxidation to support anabolism and anaplerosis, altered lipid synthesis/oxidation ratios, increased one-carbon metabolism, and activation of the pentose phosphate pathway to support nucleoside synthesis are but some of the key metabolic signatures of vascular cells in PH. In addition, metabolic reprogramming of macrophages is observed in PH and is characterized by distinct features, such as the induction of specific activation or polarization states that enable their participation in the vascular remodeling process. CRITICAL ISSUES: Accumulation of reducing equivalents, such as NAD(P)H in PH cells, also contributes to their altered phenotype both directly and indirectly by regulating the activity of the transcriptional co-repressor C-terminal-binding protein 1 to control the proliferative/inflammatory gene expression in resident and immune cells. Further, similar to the role of anomalous metabolism in mitochondria in cancer, in PH short-term hypoxia-dependent and long-term hypoxia-independent alterations of mitochondrial activity, in the absence of genetic mutation of key mitochondrial enzymes, have been observed and explored as potential therapeutic targets. FUTURE DIRECTIONS: For the foreseeable future, short- and long-term metabolic reprogramming will become a candidate druggable target in the treatment of PH. Antioxid. Redox Signal. 28, 230-250.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033857
003      
CZ-PrNML
005      
20181022121455.0
007      
ta
008      
181008s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1089/ars.2017.7217 $2 doi
035    __
$a (PubMed)28637353
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a D'Alessandro, Angelo $u 1 Department of Biochemistry and Molecular Genetics, University of Colorado - Denver , Colorado.
245    10
$a Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming / $c A. D'Alessandro, KC. El Kasmi, L. Plecitá-Hlavatá, P. Ježek, M. Li, H. Zhang, SA. Gupte, KR. Stenmark,
520    9_
$a SIGNIFICANCE: The molecular events that promote the development of pulmonary hypertension (PH) are complex and incompletely understood. The complex interplay between the pulmonary vasculature and its immediate microenvironment involving cells of immune system (i.e., macrophages) promotes a persistent inflammatory state, pathological angiogenesis, and fibrosis that are driven by metabolic reprogramming of mesenchymal and immune cells. Recent Advancements: Consistent with previous findings in the field of cancer metabolism, increased glycolytic rates, incomplete glucose and glutamine oxidation to support anabolism and anaplerosis, altered lipid synthesis/oxidation ratios, increased one-carbon metabolism, and activation of the pentose phosphate pathway to support nucleoside synthesis are but some of the key metabolic signatures of vascular cells in PH. In addition, metabolic reprogramming of macrophages is observed in PH and is characterized by distinct features, such as the induction of specific activation or polarization states that enable their participation in the vascular remodeling process. CRITICAL ISSUES: Accumulation of reducing equivalents, such as NAD(P)H in PH cells, also contributes to their altered phenotype both directly and indirectly by regulating the activity of the transcriptional co-repressor C-terminal-binding protein 1 to control the proliferative/inflammatory gene expression in resident and immune cells. Further, similar to the role of anomalous metabolism in mitochondria in cancer, in PH short-term hypoxia-dependent and long-term hypoxia-independent alterations of mitochondrial activity, in the absence of genetic mutation of key mitochondrial enzymes, have been observed and explored as potential therapeutic targets. FUTURE DIRECTIONS: For the foreseeable future, short- and long-term metabolic reprogramming will become a candidate druggable target in the treatment of PH. Antioxid. Redox Signal. 28, 230-250.
650    _2
$a zvířata $7 D000818
650    _2
$a uhlík $x metabolismus $7 D002244
650    _2
$a energetický metabolismus $7 D004734
650    _2
$a epigeneze genetická $7 D044127
650    _2
$a regulace genové exprese $7 D005786
650    _2
$a glukosa $x metabolismus $7 D005947
650    _2
$a glukosa-6-fosfátdehydrogenasa $x metabolismus $7 D005954
650    _2
$a glykolýza $7 D006019
650    _2
$a lidé $7 D006801
650    _2
$a koncentrace vodíkových iontů $7 D006863
650    _2
$a plicní hypertenze $x etiologie $x metabolismus $7 D006976
650    _2
$a hypoxie $x metabolismus $7 D000860
650    _2
$a izoenzymy $x metabolismus $7 D007527
650    _2
$a makrofágy $7 D008264
650    _2
$a mitochondrie $x metabolismus $7 D008928
650    _2
$a oxidace-redukce $7 D010084
650    _2
$a pentózofosfátový cyklus $7 D010427
650    _2
$a superoxidy $x metabolismus $7 D013481
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a El Kasmi, Karim C $u 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado. 3 Department of Pediatric Gastroenterology, University of Colorado - Denver , Colorado.
700    1_
$a Plecitá-Hlavatá, Lydie $u 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic .
700    1_
$a Ježek, Petr $u 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic .
700    1_
$a Li, Min $u 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado.
700    1_
$a Zhang, Hui $u 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado.
700    1_
$a Gupte, Sachin A $u 5 Department of Pharmacology, School of Medicine, New York Medical College , Valhalla, New York.
700    1_
$a Stenmark, Kurt R $u 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado.
773    0_
$w MED00006026 $t Antioxidants & redox signaling $x 1557-7716 $g Roč. 28, č. 3 (2018), s. 230-250
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28637353 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181022122000 $b ABA008
999    __
$a ok $b bmc $g 1339624 $s 1030851
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 28 $c 3 $d 230-250 $e 20170814 $i 1557-7716 $m Antioxidants & redox signaling $n Antioxid Redox Signal $x MED00006026
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...