-
Je něco špatně v tomto záznamu ?
Segmentation Method of Time-Lapse Microscopy Images with the Focus on Biocompatibility Assessment
J. Soukup, P. Císař, F. Šroubek,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 2002-02-01 do 2022-12-31
Nursing & Allied Health Database (ProQuest)
od 2002-02-01 do 2022-12-31
Health & Medicine (ProQuest)
od 2002-02-01 do 2022-12-31
- MeSH
- algoritmy MeSH
- artefakty MeSH
- časosběrné zobrazování * MeSH
- cytologické techniky přístrojové vybavení metody MeSH
- lidé MeSH
- mikroskopie * MeSH
- rozpoznávání automatizované MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Biocompatibility testing of new materials is often performed in vitro by measuring the growth rate of mammalian cancer cells in time-lapse images acquired by phase contrast microscopes. The growth rate is measured by tracking cell coverage, which requires an accurate automatic segmentation method. However, cancer cells have irregular shapes that change over time, the mottled background pattern is partially visible through the cells and the images contain artifacts such as halos. We developed a novel algorithm for cell segmentation that copes with the mentioned challenges. It is based on temporal differences of consecutive images and a combination of thresholding, blurring, and morphological operations. We tested the algorithm on images of four cell types acquired by two different microscopes, evaluated the precision of segmentation against manual segmentation performed by a human operator, and finally provided comparison with other freely available methods. We propose a new, fully automated method for measuring the cell growth rate based on fitting a coverage curve with the Verhulst population model. The algorithm is fast and shows accuracy comparable with manual segmentation. Most notably it can correctly separate live from dead cells.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18034135
- 003
- CZ-PrNML
- 005
- 20181016121308.0
- 007
- ta
- 008
- 181008s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1017/S143192761600074X $2 doi
- 035 __
- $a (PubMed)27132464
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Soukup, Jindřich $u 1Institute of Complex Systems FFPW, CENAKVA,University of South Bohemia,Zámek 136,CZ-373 33 Nové Hrady,Czech Republic.
- 245 10
- $a Segmentation Method of Time-Lapse Microscopy Images with the Focus on Biocompatibility Assessment / $c J. Soukup, P. Císař, F. Šroubek,
- 520 9_
- $a Biocompatibility testing of new materials is often performed in vitro by measuring the growth rate of mammalian cancer cells in time-lapse images acquired by phase contrast microscopes. The growth rate is measured by tracking cell coverage, which requires an accurate automatic segmentation method. However, cancer cells have irregular shapes that change over time, the mottled background pattern is partially visible through the cells and the images contain artifacts such as halos. We developed a novel algorithm for cell segmentation that copes with the mentioned challenges. It is based on temporal differences of consecutive images and a combination of thresholding, blurring, and morphological operations. We tested the algorithm on images of four cell types acquired by two different microscopes, evaluated the precision of segmentation against manual segmentation performed by a human operator, and finally provided comparison with other freely available methods. We propose a new, fully automated method for measuring the cell growth rate based on fitting a coverage curve with the Verhulst population model. The algorithm is fast and shows accuracy comparable with manual segmentation. Most notably it can correctly separate live from dead cells.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a artefakty $7 D016477
- 650 _2
- $a cytologické techniky $x přístrojové vybavení $x metody $7 D003584
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a mikroskopie $7 D008853
- 650 _2
- $a rozpoznávání automatizované $7 D010363
- 650 12
- $a časosběrné zobrazování $7 D059008
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Císař, Petr $u 1Institute of Complex Systems FFPW, CENAKVA,University of South Bohemia,Zámek 136,CZ-373 33 Nové Hrady,Czech Republic.
- 700 1_
- $a Šroubek, Filip $u 3Department of Image Processing,Institute of Information Theory and Automation of the ASCR,Pod vodárenskou věží 4,CZ-182 08 Prague 8,Czech Republic.
- 773 0_
- $w MED00005775 $t Microscopy and microanalysis the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada $x 1435-8115 $g Roč. 22, č. 3 (2016), s. 497-506
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27132464 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20181008 $b ABA008
- 991 __
- $a 20181016121806 $b ABA008
- 999 __
- $a ok $b bmc $g 1339724 $s 1031129
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 22 $c 3 $d 497-506 $e 20160502 $i 1435-8115 $m Microscopy and microanalysis $n Microsc Microanal $x MED00005775
- LZP __
- $a Pubmed-20181008