• Je něco špatně v tomto záznamu ?

Automated Analysis of Microscopic Images of Isolated Pancreatic Islets

D Habart, J Svihlik, J Schier, M Cahova, P Girman, K Zacharovova, Z Berkova, J Kriz, E Fabryova, L Kosinova, Z Papackova, J Kybic, F Saudek

. 2016 ; 25 (12) : 2145-2156.

Jazyk angličtina Země Spojené státy americké

Perzistentní odkaz   https://www.medvik.cz/link/bmc18036873

Grantová podpora
NT13099 MZ0 CEP - Centrální evidence projektů

Clinical islet transplantation programs rely on the capacities of individual centers to quantify isolated islets. Current computer-assisted methods require input from human operators. Here we describe two machine learning algorithms for islet quantification: the trainable islet algorithm (TIA) and the nontrainable purity algorithm (NPA). These algorithms automatically segment pancreatic islets and exocrine tissue on microscopic images in order to count individual islets and calculate islet volume and purity. References for islet counts and volumes were generated by the fully manual segmentation (FMS) method, which was validated against the internal DNA standard. References for islet purity were generated via the expert visual assessment (EVA) method, which was validated against the FMS method. The TIA is intended to automatically evaluate micrographs of isolated islets from future donors after being trained on micrographs from a limited number of past donors. Its training ability was first evaluated on 46 images from four donors. The pixel-to-pixel comparison, binary statistics, and islet DNA concentration indicated that the TIA was successfully trained, regardless of the color differences of the original images. Next, the TIA trained on the four donors was validated on an additional 36 images from nine independent donors. The TIA was fast (67 s/image), correlated very well with the FMS method (R2=1.00 and 0.92 for islet volume and islet count, respectively), and had small REs (0.06 and 0.07 for islet volume and islet count, respectively). Validation of the NPA against the EVA method using 70 images from 12 donors revealed that the NPA had a reasonable speed (69 s/image), had an acceptable RE (0.14), and correlated well with the EVA method (R2=0.88). Our results demonstrate that a fully automated analysis of clinical-grade micrographs of isolated pancreatic islets is feasible. The algorithms described herein will be freely available as a Fiji platform plugin.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18036873
003      
CZ-PrNML
005      
20181105111647.0
007      
ta
008      
181105s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.3727/096368916X692005 $2 doi
035    __
$a (PubMed)27302978
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Habart David
245    10
$a Automated Analysis of Microscopic Images of Isolated Pancreatic Islets / $c D Habart, J Svihlik, J Schier, M Cahova, P Girman, K Zacharovova, Z Berkova, J Kriz, E Fabryova, L Kosinova, Z Papackova, J Kybic, F Saudek
520    9_
$a Clinical islet transplantation programs rely on the capacities of individual centers to quantify isolated islets. Current computer-assisted methods require input from human operators. Here we describe two machine learning algorithms for islet quantification: the trainable islet algorithm (TIA) and the nontrainable purity algorithm (NPA). These algorithms automatically segment pancreatic islets and exocrine tissue on microscopic images in order to count individual islets and calculate islet volume and purity. References for islet counts and volumes were generated by the fully manual segmentation (FMS) method, which was validated against the internal DNA standard. References for islet purity were generated via the expert visual assessment (EVA) method, which was validated against the FMS method. The TIA is intended to automatically evaluate micrographs of isolated islets from future donors after being trained on micrographs from a limited number of past donors. Its training ability was first evaluated on 46 images from four donors. The pixel-to-pixel comparison, binary statistics, and islet DNA concentration indicated that the TIA was successfully trained, regardless of the color differences of the original images. Next, the TIA trained on the four donors was validated on an additional 36 images from nine independent donors. The TIA was fast (67 s/image), correlated very well with the FMS method (R2=1.00 and 0.92 for islet volume and islet count, respectively), and had small REs (0.06 and 0.07 for islet volume and islet count, respectively). Validation of the NPA against the EVA method using 70 images from 12 donors revealed that the NPA had a reasonable speed (69 s/image), had an acceptable RE (0.14), and correlated well with the EVA method (R2=0.88). Our results demonstrate that a fully automated analysis of clinical-grade micrographs of isolated pancreatic islets is feasible. The algorithms described herein will be freely available as a Fiji platform plugin.
590    __
$a bohemika - dle Pubmed
650    02
$a algoritmy $7 D000465
650    02
$a zvířata $7 D000818
650    02
$a automatizace $7 D001331
650    02
$a lidé $7 D006801
650    12
$a počítačové zpracování obrazu $7 D007091
650    12
$a Langerhansovy ostrůvky $x cytologie $7 D007515
650    12
$a transplantace Langerhansových ostrůvků $7 D016381
650    02
$a strojové učení $7 D000069550
650    02
$a krysa rodu Rattus $7 D051381
650    02
$a potkani Wistar $7 D017208
700    1_
$a Svihlik Jan
700    1_
$a Schier J
700    1_
$a Cahová, Monika $7 xx0070633
700    1_
$a Girman, Peter $7 xx0081892
700    1_
$a Zacharovová, Klára $7 xx0074471
700    1_
$a Berková, Zuzana $7 xx0081890
700    1_
$a Kříž, Jan, $d 1972- $7 xx0056572
700    1_
$a Fábryová, Eva $7 _AN074825
700    1_
$a Kosinová, Lucie $7 _AN089763
700    1_
$a Papáčková, Zuzana $7 xx0213744
700    1_
$a Kybic, Jan, $d 1974- $7 xx0028484
700    1_
$a Saudek, František, $d 1955- $7 nlk20000083698
773    0_
$t Cell Transplantation $g Roč. 25, č. 12 (2016), s. 2145-2156 $p Cell Transplant $x 0963-6897 $w MED00001075
773    0_
$p Cell Transplant $g 25(12):2145-2156, 2016 12 13
910    __
$a ABA008 $y 4 $z 0
990    __
$a 20181105111721 $b ABA008
991    __
$a 20181105111721 $b ABA008
999    __
$a ok $b bmc $g 1348521 $s 1033899
BAS    __
$a 3
BMC    __
$a 2016 $b 25 $c 12 $d 2145-2156 $x MED00001075 $i 0963-6897 $m Cell transplantation
GRA    __
$a NT13099 $p MZ0
LZP    __
$a NLK 2018/lp

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...