• Je něco špatně v tomto záznamu ?

Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids

VA. Lukhtanov, V. Dincă, M. Friberg, J. Šíchová, M. Olofsson, R. Vila, F. Marec, C. Wiklund,

. 2018 ; 115 (41) : E9610-E9619. [pub] 20180928

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19000341
E-zdroje Online Plný text

NLK Free Medical Journals od 1915 do Před 6 měsíci
Freely Accessible Science Journals od 1915 do Před 6 měsíci
PubMed Central od 1915 do Před 6 měsíci
Europe PubMed Central od 1915 do Před 6 měsíci
Open Access Digital Library od 1915-01-01
Open Access Digital Library od 1915-01-15

Chromosomal rearrangements (e.g., fusions/fissions) have the potential to drive speciation. However, their accumulation in a population is generally viewed as unlikely, because chromosomal heterozygosity should lead to meiotic problems and aneuploid gametes. Canonical meiosis involves segregation of homologous chromosomes in meiosis I and sister chromatid segregation during meiosis II. In organisms with holocentric chromosomes, which are characterized by kinetic activity distributed along almost the entire chromosome length, this order may be inverted depending on their metaphase I orientation. Here we analyzed the evolutionary role of this intrinsic versatility of holocentric chromosomes, which is not available to monocentric ones, by studying F1 to F4 hybrids between two chromosomal races of the Wood White butterfly (Leptidea sinapis), separated by at least 24 chromosomal fusions/fissions. We found that these chromosomal rearrangements resulted in multiple meiotic multivalents, and, contrary to the theoretical prediction, the hybrids displayed relatively high reproductive fitness (42% of that of the control lines) and regular behavior of meiotic chromosomes. In the hybrids, we also discovered inverted meiosis, in which the first and critical stage of chromosome number reduction was replaced by the less risky stage of sister chromatid separation. We hypothesize that the ability to invert the order of the main meiotic events facilitates proper chromosome segregation and hence rescues fertility and viability in chromosomal hybrids, potentially promoting dynamic karyotype evolution and chromosomal speciation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19000341
003      
CZ-PrNML
005      
20190111151624.0
007      
ta
008      
190107s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1073/pnas.1802610115 $2 doi
035    __
$a (PubMed)30266792
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Lukhtanov, Vladimir A $u Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, 199034 St. Petersburg, Russia; lukhtanov@mail.ru christer.wiklund@zoologi.su.se. Department of Entomology, St. Petersburg State University, 199034 St. Petersburg, Russia.
245    10
$a Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids / $c VA. Lukhtanov, V. Dincă, M. Friberg, J. Šíchová, M. Olofsson, R. Vila, F. Marec, C. Wiklund,
520    9_
$a Chromosomal rearrangements (e.g., fusions/fissions) have the potential to drive speciation. However, their accumulation in a population is generally viewed as unlikely, because chromosomal heterozygosity should lead to meiotic problems and aneuploid gametes. Canonical meiosis involves segregation of homologous chromosomes in meiosis I and sister chromatid segregation during meiosis II. In organisms with holocentric chromosomes, which are characterized by kinetic activity distributed along almost the entire chromosome length, this order may be inverted depending on their metaphase I orientation. Here we analyzed the evolutionary role of this intrinsic versatility of holocentric chromosomes, which is not available to monocentric ones, by studying F1 to F4 hybrids between two chromosomal races of the Wood White butterfly (Leptidea sinapis), separated by at least 24 chromosomal fusions/fissions. We found that these chromosomal rearrangements resulted in multiple meiotic multivalents, and, contrary to the theoretical prediction, the hybrids displayed relatively high reproductive fitness (42% of that of the control lines) and regular behavior of meiotic chromosomes. In the hybrids, we also discovered inverted meiosis, in which the first and critical stage of chromosome number reduction was replaced by the less risky stage of sister chromatid separation. We hypothesize that the ability to invert the order of the main meiotic events facilitates proper chromosome segregation and hence rescues fertility and viability in chromosomal hybrids, potentially promoting dynamic karyotype evolution and chromosomal speciation.
650    _2
$a zvířata $7 D000818
650    12
$a motýli $x genetika $x metabolismus $7 D002080
650    12
$a chiméra $x genetika $x metabolismus $7 D002678
650    12
$a chromatidy $x genetika $x metabolismus $7 D002842
650    _2
$a chromozomy hmyzu $x genetika $x metabolismus $7 D059006
650    _2
$a metafáze $x fyziologie $7 D008677
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Dincă, Vlad $u Department of Ecology and Genetics, University of Oulu, 90014 Oulu, Finland. Institut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas and Universitat Pompeu Fabra, 08003 Barcelona, Spain.
700    1_
$a Friberg, Magne $u Biodiversity Unit, Department of Biology, Lund University, 22362 Lund, Sweden.
700    1_
$a Šíchová, Jindra $u Laboratory of Molecular Cytogenetics, Institute of Entomology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic.
700    1_
$a Olofsson, Martin $u Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden.
700    1_
$a Vila, Roger $u Institut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas and Universitat Pompeu Fabra, 08003 Barcelona, Spain.
700    1_
$a Marec, František $u Laboratory of Molecular Cytogenetics, Institute of Entomology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic.
700    1_
$a Wiklund, Christer $u Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden lukhtanov@mail.ru christer.wiklund@zoologi.su.se.
773    0_
$w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 115, č. 41 (2018), s. E9610-E9619
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30266792 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20190111151829 $b ABA008
999    __
$a ok $b bmc $g 1363817 $s 1038464
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 115 $c 41 $d E9610-E9619 $e 20180928 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
LZP    __
$a Pubmed-20190107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...