• This record comes from PubMed

Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids

. 2018 Oct 09 ; 115 (41) : E9610-E9619. [epub] 20180928

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Chromosomal rearrangements (e.g., fusions/fissions) have the potential to drive speciation. However, their accumulation in a population is generally viewed as unlikely, because chromosomal heterozygosity should lead to meiotic problems and aneuploid gametes. Canonical meiosis involves segregation of homologous chromosomes in meiosis I and sister chromatid segregation during meiosis II. In organisms with holocentric chromosomes, which are characterized by kinetic activity distributed along almost the entire chromosome length, this order may be inverted depending on their metaphase I orientation. Here we analyzed the evolutionary role of this intrinsic versatility of holocentric chromosomes, which is not available to monocentric ones, by studying F1 to F4 hybrids between two chromosomal races of the Wood White butterfly (Leptidea sinapis), separated by at least 24 chromosomal fusions/fissions. We found that these chromosomal rearrangements resulted in multiple meiotic multivalents, and, contrary to the theoretical prediction, the hybrids displayed relatively high reproductive fitness (42% of that of the control lines) and regular behavior of meiotic chromosomes. In the hybrids, we also discovered inverted meiosis, in which the first and critical stage of chromosome number reduction was replaced by the less risky stage of sister chromatid separation. We hypothesize that the ability to invert the order of the main meiotic events facilitates proper chromosome segregation and hence rescues fertility and viability in chromosomal hybrids, potentially promoting dynamic karyotype evolution and chromosomal speciation.

See more in PubMed

Sumner AT. Chromosomes: Organization and Function. Wiley-Blackwell; Malden, MA: 2003.

Stone JL, et al. International Schizophrenia Consortium Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. 2008;455:237–241. PubMed PMC

Maddalo D, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature. 2014;516:423–427. PubMed PMC

Mertens F, Johansson B, Fioretos T, Mitelman F. The emerging complexity of gene fusions in cancer. Nat Rev Cancer. 2015;15:371–381. PubMed

Navarro A, Barton NH. Chromosomal speciation and molecular divergence–Accelerated evolution in rearranged chromosomes. Science. 2003;300:321–324. PubMed

Faria R, Navarro A. Chromosomal speciation revisited: Rearranging theory with pieces of evidence. Trends Ecol Evol. 2010;25:660–669. PubMed

Kandul NP, Lukhtanov VA, Pierce NE. Karyotypic diversity and speciation in Agrodiaetus butterflies. Evolution. 2007;61:546–559. PubMed

Butlin RK. Recombination and speciation. Mol Ecol. 2005;14:2621–2635. PubMed

Sodeland M, et al. “Islands of divergence” in the Atlantic cod genome represent polymorphic chromosomal rearrangements. Genome Biol Evol. 2016;8:1012–1022. PubMed PMC

Kleinjan DA, Lettice LA. Long-range gene control and genetic disease. Adv Genet. 2008;61:339–388. PubMed

Vershinina AO, Lukhtanov VA. Evolutionary mechanisms of runaway chromosome number change in Agrodiaetus butterflies. Sci Rep. 2017;7:8199. PubMed PMC

Grant V. Plant Speciation. Columbia Univ Press; New York: 1981.

King M. Species Evolution: The Role of Chromosomal Change. Cambridge Univ Press; Cambridge, UK: 1993.

Cortes DB, McNally KL, Mains PE, McNally FJ. The asymmetry of female meiosis reduces the frequency of inheritance of unpaired chromosomes. eLife. 2015;4:e06056. PubMed PMC

Lenormand T, Dutheil J. Recombination difference between sexes: A role for haploid selection. PLoS Biol. 2005;3:e63. PubMed PMC

Castiglia R, Capanna E. Contact zone between chromosomal races of Mus musculus domesticus. 2. Fertility and segregation in laboratory-reared and wild mice heterozygous for multiple Robertsonian rearrangements. Heredity (Edinb) 2000;85:147–156. PubMed

Lukhtanov VA, Dincă V, Talavera G, Vila R. Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation. BMC Evol Biol. 2011;11:109. PubMed PMC

Dobigny G, Britton-Davidian J, Robinson TJ. Chromosomal polymorphism in mammals: An evolutionary perspective. Biol Rev Camb Philos Soc. 2017;92:1–21. PubMed

Dincă V, Lukhtanov VA, Talavera G, Vila R. Unexpected layers of cryptic diversity in wood white Leptidea butterflies. Nat Commun. 2011;2:324. PubMed

Šíchová J, et al. Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evol Biol. 2015;15:89. PubMed PMC

Šíchová J, et al. Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, Leptidea amurensis. Biol J Linn Soc Lond. 2016;118:457–471.

Réal P. Lépidoptères nouveaux principalement jurassiens. Mém Comité de Liaison Rech Ecofaunist Jura. 1988;4:1–28.

Lorković Z. Leptidea reali Reissinger, 1989 (=lorkovicii real 1988), a new European species (Lepid., Pieridae) Natura Croat. 1993;2:1–26.

Friberg M, et al. Female mate choice determines reproductive isolation between sympatric butterflies. Behav Ecol Sociobiol. 2008;62:873–886.

Martin J-F, Gilles A, Descimon H. Species concepts and sibling species: The case of Leptidea sinapis and Leptidea reali. In: C.L. Boggs, WB Watt, PR Ehrlich., editors. Butterflies: Ecology and Evolution Taking Flight. Univ Chicago Press; Chicago: 2003. pp. 459–476.

Verovnik R, Glogovčan P. Morphological and molecular evidence of a possible hybrid zone of Leptidea sinapis and L. reali (Lepidoptera: Pieridae) Eur J Entomol. 2007;104:667–674.

Dincă V, et al. Reproductive isolation and patterns of genetic differentiation in a cryptic butterfly species complex. J Evol Biol. 2013;26:2095–2106. PubMed PMC

Lorković Z. Die Chromozomenzahlen in der Spermatogenese der Tagfalter. Chromosoma. 1941;2:155–191.

Talla V, et al. Rapid increase in genome size as a consequence of transposable element hyperactivity in wood-white (Leptidea) butterflies. Genome Biol Evol. 2017;9:2491–2505. PubMed PMC

Melters DP, Paliulis LV, Korf IF, Chan SWL. Holocentric chromosomes: Convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Res. 2012;20:579–593. PubMed

Murakami A, Imai HT. Cytological evidence for holocentric chromosomes of the silkworms, Bombyx mori and B. mandarina, (Bombycidae, Lepidoptera) Chromosoma. 1974;47:167–178. PubMed

Heckmann S, et al. Alternative meiotic chromatid segregation in the holocentric plant Luzula elegans. Nat Commun. 2014;5:4979. PubMed PMC

Manicardi GC, Mandrioli M, Blackman RL. The cytogenetic architecture of the aphid genome. Biol Rev Camb Philos Soc. 2015;90:112–125. PubMed

Bogdanov YF. [Inverted meiosis and its place in the evolution of sexual reproduction pathways] Genetika. 2016;52:541–560. PubMed

Bureš P, Zedek F, Marková M. 2013. Holocentric chromosomes. Plant Genome Diversity Volume 2, Physical Structure, Behaviour and Evolution of Plant Genomes, Plant Genome Diversity, eds Leitch IJ, Greilhuber J, Doležel J, Wendel JF (Springer-Verlag, Vienna), Vol 2, pp 187–208.

Kuznetsova VG. Chromosomes of holokinetic type and their distribution among insects and other invertebrate animals. In: Scarlato OA, editor. Karyosystematics of Invertebrate Animals. Zool Inst; Leningrad: 1979. pp. 5–19.

Loidl J. Conservation and variability of meiosis across the eukaryotes. Annu Rev Genet. 2016;50:293–316. PubMed

Nokkala S, Kuznetsova VG, Maryanska-Nadachowska A, Nokkala C. Holocentric chromosomes in meiosis. II. The modes of orientation and segregation of a trivalent. Chromosome Res. 2006;14:559–565. PubMed

Viera A, Page J, Rufas JS. Inverted meiosis: The true bugs as a model to study. Genome Dyn. 2009;5:137–156. PubMed

White MJD. Animal Cytology and Evolution. Cambridge Univ Press; Cambridge, UK: 1973.

Nokkala S, Kuznetsova VG, Maryanska-Nadachowska A, Nokkala C. Holocentric chromosomes in meiosis. I. Restriction of the number of chiasmata in bivalents. Chromosome Res. 2004;12:733–739. PubMed

Banno Y, Kawaguchi Y, Koga K, Doira H. Postreductional meiosis revealed in males of the mutant with chromosomal aberration “T(23;25)Nd” of the silkworm, Bombyx mori. J Sericol Sci Jpn. 1995;64:410–414.

Marec F. Synaptonemal complexes in insects. Int J Insect Morphol Embryol. 1996;25:205–233.

Marec F, Tothová A, Sahara K, Traut W. Meiotic pairing of sex chromosome fragments and its relation to atypical transmission of a sex-linked marker in Ephestia kuehniella (Insecta: Lepidoptera) Heredity (Edinb) 2001;87:659–671. PubMed

Lenormand T, Engelstaedter J, Johnston SE, Wijnker E, Haag CR. Evolutionary mysteries in meiosis. Phil Trans R Soc B. 2016;371:20160001. PubMed PMC

Cabral G, Marques A, Schubert V, Pedrosa-Harand A, Schlögelhofer P. Chiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomes. Nat Commun. 2014;5:5070. PubMed PMC

Pazy B, Plitmann U. Unusual chromosome separation in meiosis of Cuscuta L. Genome. 1991;10:533–536.

Bongiorni S, Fiorenzo P, Pippoletti D, Prantera G. Inverted meiosis and meiotic drive in mealybugs. Chromosoma. 2004;112:331–341. PubMed

Wrensch DL, Kethley J, Norton RA. Cytogenetics of holokinetic chromosomes and inverted meiosis: Keys to the evolutionary success of mites, with generalizations on eukaryotes. In: Houck MA, editor. Mites: Ecological and Evolutionary Analyses of Life-history Patterns. Springer; Dordrecht, The Netherlands: 1994. pp. 282–343.

Ottolini CS, et al. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat Genet. 2015;47:727–735. PubMed PMC

Helenius O. The mode of bivalent orientation in the Hemiptera. Hereditas. 1952;38:420–424.

Nokkala S, Nokkala C. The absence of chiasma terminalization and inverted meiosis in males and females of Myrmus miriformis Fn. (Corizidae, Heteroptera) Heredity. 1997;78:561–566.

Suomalainen E. The kinetochore and the bivalent structure in the Lepidoptera. Hereditas. 1953;39:88–96.

Marques A, Pedrosa-Harand A. Holocentromere identity: From the typical mitotic linear structure to the great plasticity of meiotic holocentromeres. Chromosoma. 2016;125:669–681. PubMed

Lukhtanov VA, Dantchenko AV. A new butterfly species from south Russia revealed through chromosomal and molecular analysis of the Polyommatus (Agrodiaetus) damonides complex (Lepidoptera, Lycaenidae) Comp Cytogenet. 2017;11:769–795. PubMed PMC

Traut W. A study of recombination, formation of chiasmata and synaptonemal complexes in female and male meiosis of Ephestia kuehniella (Lepidoptera) Genetica. 1977;47:135–142.

Traut W, Clarke CA. Karyotype evolution by chromosome fusion in the moth genus Orgyia. Hereditas. 1997;126:77–84.

McClure M, Dutrillaux B, Dutrillaux A-M, Lukhtanov V, Elias M. Heterozygosity and chain multivalents during meiosis illustrate ongoing evolution as a result of multiple holokinetic chromosome fusions in the genus Melinaea (Lepidoptera, Nymphalidae) Cytogenet Genome Res. 2017;153:213–222. PubMed

Lukhtanov VA, Dantchenko AV. Principles of highly ordered metaphase I bivalent arrangement in spermatocytes of Agrodiaetus (Lepidoptera) Chromosome Res. 2002;10:5–20. PubMed

Lukhtanov VA. The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms. Comp Cytogenet. 2015;9:683–690. PubMed PMC

Lukhtanov VA, et al. Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies. Nature. 2005;436:385–389. PubMed

Jankowska M, et al. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma. 2015;124:519–528. PubMed

Coyne JA, Orr HA. Speciation. Sinauer Assoc; Sunderland, MA: 2004.

Newest 20 citations...

See more in
Medvik | PubMed

The burst of satellite DNA in Leptidea wood white butterflies and their putative role in karyotype evolution

. 2024 Dec 01 ; 31 (6) : .

Holocentric repeat landscapes: From micro-evolutionary patterns to macro-evolutionary associations with karyotype evolution

. 2024 Dec ; 33 (24) : e17100. [epub] 20230814

More hidden diversity in a cryptic species complex: a new subspecies of Leptideasinapis (Lepidoptera, Pieridae) from Northern Iran

. 2023 ; 17 () : 113-128. [epub] 20230504

Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'

. 2021 Sep 13 ; 376 (1833) : 20200103. [epub] 20210726

Large-scale comparative analysis of cytogenetic markers across Lepidoptera

. 2021 Jun 09 ; 11 (1) : 12214. [epub] 20210609

Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies

. 2020 Sep ; 125 (3) : 138-154. [epub] 20200609

Parthenogenesis as a Solution to Hybrid Sterility: The Mechanistic Basis of Meiotic Distortions in Clonal and Sterile Hybrids

. 2020 Aug ; 215 (4) : 975-987. [epub] 20200609

Centric Fusions behind the Karyotype Evolution of Neotropical Nannostomus Pencilfishes (Characiforme, Lebiasinidae): First Insights from a Molecular Cytogenetic Perspective

. 2020 Jan 13 ; 11 (1) : . [epub] 20200113

Advances and Challenges of Using the Sterile Insect Technique for the Management of Pest Lepidoptera

. 2019 Oct 25 ; 10 (11) : . [epub] 20191025

Insights into the karyotype and genome evolution of haplogyne spiders indicate a polyploid origin of lineage with holokinetic chromosomes

. 2019 Feb 28 ; 9 (1) : 3001. [epub] 20190228

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...