-
Je něco špatně v tomto záznamu ?
Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR
C. Crowe-McAuliffe, M. Graf, P. Huter, H. Takada, M. Abdelshahid, J. Nováček, V. Murina, GC. Atkinson, V. Hauryliuk, DN. Wilson,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1915 do Před 6 měsíci
Freely Accessible Science Journals
od 1915 do Před 6 měsíci
PubMed Central
od 1915 do Před 6 měsíci
Europe PubMed Central
od 1915 do Před 6 měsíci
Open Access Digital Library
od 1915-01-15
Open Access Digital Library
od 1915-01-01
PubMed
30126986
DOI
10.1073/pnas.1808535115
Knihovny.cz E-zdroje
- MeSH
- ABC transportéry chemie genetika metabolismus MeSH
- alosterická regulace účinky léků genetika MeSH
- antibakteriální látky chemie farmakologie MeSH
- Bacillus subtilis enzymologie genetika MeSH
- bakteriální léková rezistence * MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- ribozomy chemie genetika metabolismus MeSH
- RNA transferová chemie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Many Gram-positive pathogenic bacteria employ ribosomal protection proteins (RPPs) to confer resistance to clinically important antibiotics. In Bacillus subtilis, the RPP VmlR confers resistance to lincomycin (Lnc) and the streptogramin A (SA) antibiotic virginiamycin M (VgM). VmlR is an ATP-binding cassette (ABC) protein of the F type, which, like other antibiotic resistance (ARE) ABCF proteins, is thought to bind to antibiotic-stalled ribosomes and promote dissociation of the drug from its binding site. To investigate the molecular mechanism by which VmlR confers antibiotic resistance, we have determined a cryo-electron microscopy (cryo-EM) structure of an ATPase-deficient B. subtilis VmlR-EQ2 mutant in complex with a B. subtilis ErmDL-stalled ribosomal complex (SRC). The structure reveals that VmlR binds within the E site of the ribosome, with the antibiotic resistance domain (ARD) reaching into the peptidyltransferase center (PTC) of the ribosome and a C-terminal extension (CTE) making contact with the small subunit (SSU). To access the PTC, VmlR induces a conformational change in the P-site tRNA, shifting the acceptor arm out of the PTC and relocating the CCA end of the P-site tRNA toward the A site. Together with microbiological analyses, our study indicates that VmlR allosterically dissociates the drug from its ribosomal binding site and exhibits specificity to dislodge VgM, Lnc, and the pleuromutilin tiamulin (Tia), but not chloramphenicol (Cam), linezolid (Lnz), nor the macrolide erythromycin (Ery).
Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
Department of Molecular Biology Umeå University 90187 Umeå Sweden
Institute for Biochemistry and Molecular Biology University of Hamburg 20146 Hamburg Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19000438
- 003
- CZ-PrNML
- 005
- 20190111151701.0
- 007
- ta
- 008
- 190107s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1073/pnas.1808535115 $2 doi
- 035 __
- $a (PubMed)30126986
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Crowe-McAuliffe, Caillan $u Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
- 245 10
- $a Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR / $c C. Crowe-McAuliffe, M. Graf, P. Huter, H. Takada, M. Abdelshahid, J. Nováček, V. Murina, GC. Atkinson, V. Hauryliuk, DN. Wilson,
- 520 9_
- $a Many Gram-positive pathogenic bacteria employ ribosomal protection proteins (RPPs) to confer resistance to clinically important antibiotics. In Bacillus subtilis, the RPP VmlR confers resistance to lincomycin (Lnc) and the streptogramin A (SA) antibiotic virginiamycin M (VgM). VmlR is an ATP-binding cassette (ABC) protein of the F type, which, like other antibiotic resistance (ARE) ABCF proteins, is thought to bind to antibiotic-stalled ribosomes and promote dissociation of the drug from its binding site. To investigate the molecular mechanism by which VmlR confers antibiotic resistance, we have determined a cryo-electron microscopy (cryo-EM) structure of an ATPase-deficient B. subtilis VmlR-EQ2 mutant in complex with a B. subtilis ErmDL-stalled ribosomal complex (SRC). The structure reveals that VmlR binds within the E site of the ribosome, with the antibiotic resistance domain (ARD) reaching into the peptidyltransferase center (PTC) of the ribosome and a C-terminal extension (CTE) making contact with the small subunit (SSU). To access the PTC, VmlR induces a conformational change in the P-site tRNA, shifting the acceptor arm out of the PTC and relocating the CCA end of the P-site tRNA toward the A site. Together with microbiological analyses, our study indicates that VmlR allosterically dissociates the drug from its ribosomal binding site and exhibits specificity to dislodge VgM, Lnc, and the pleuromutilin tiamulin (Tia), but not chloramphenicol (Cam), linezolid (Lnz), nor the macrolide erythromycin (Ery).
- 650 _2
- $a ABC transportéry $x chemie $x genetika $x metabolismus $7 D018528
- 650 _2
- $a alosterická regulace $x účinky léků $x genetika $7 D000494
- 650 _2
- $a antibakteriální látky $x chemie $x farmakologie $7 D000900
- 650 _2
- $a Bacillus subtilis $x enzymologie $x genetika $7 D001412
- 650 _2
- $a bakteriální proteiny $x chemie $x genetika $x metabolismus $7 D001426
- 650 12
- $a bakteriální léková rezistence $7 D024881
- 650 _2
- $a RNA transferová $x chemie $x genetika $x metabolismus $7 D012343
- 650 _2
- $a ribozomy $x chemie $x genetika $x metabolismus $7 D012270
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Graf, Michael $u Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
- 700 1_
- $a Huter, Paul $u Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
- 700 1_
- $a Takada, Hiraku $u Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden. Laboratory for Molecular Infection Medicine Sweden, Umeå University, 90187 Umeå, Sweden.
- 700 1_
- $a Abdelshahid, Maha $u Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
- 700 1_
- $a Nováček, Jiří $u Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic.
- 700 1_
- $a Murina, Victoriia $u Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden.
- 700 1_
- $a Atkinson, Gemma C $u Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden.
- 700 1_
- $a Hauryliuk, Vasili $u Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden. Laboratory for Molecular Infection Medicine Sweden, Umeå University, 90187 Umeå, Sweden. Institute of Technology, University of Tartu, 50411 Tartu, Estonia.
- 700 1_
- $a Wilson, Daniel N $u Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany; daniel.wilson@chemie.uni-hamburg.de.
- 773 0_
- $w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 115, č. 36 (2018), s. 8978-8983
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30126986 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190107 $b ABA008
- 991 __
- $a 20190111151906 $b ABA008
- 999 __
- $a ok $b bmc $g 1363844 $s 1038561
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 115 $c 36 $d 8978-8983 $e 20180820 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
- LZP __
- $a Pubmed-20190107