• Je něco špatně v tomto záznamu ?

Redox transients of P680 associated with the incremental chlorophyll-a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated photosystem II core complex of Thermosynechococcus vulcanus

G. Sipka, P. Müller, K. Brettel, M. Magyar, L. Kovács, Q. Zhu, Y. Xiao, G. Han, PH. Lambrev, JR. Shen, G. Garab,

. 2019 ; 166 (1) : 22-32. [pub] 20190318

Jazyk angličtina Země Dánsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19027797

Grantová podpora
LP2014/19 Lendület Program of the Hungarian Academy of Sciences
31470339 National Natural Science Foundation of China
XDB17000000 Strategic Priority Research Program of Chinese Academy of Sciences
2017YFA0503700 National Key R&D Program of China
French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INBS-05
EBSA
124985 National Research Development and Innovation Office of Hungary
K 128679 National Research Development and Innovation Office of Hungary
TÉT_15-1-2016-0144 National Research Development and Innovation Office of Hungary
124904 National Research Development and Innovation Office of Hungary
GINOP-2.3.2-15-2016-00001 National Research Development and Innovation Office of Hungary

Recent chlorophyll-a fluorescence yield measurements, using single-turnover saturating flashes (STSFs), have revealed the involvement of a rate-limiting step in the reactions following the charge separation induced by the first flash. As also shown here, in diuron-inhibited PSII core complexes isolated from Thermosynechococcus vulcanus the fluorescence maximum could only be reached by a train of STSFs. In order to elucidate the origin of the fluorescence yield increments in STSF series, we performed transient absorption measurements at 819 nm, reflecting the photooxidation and re-reduction kinetics of the primary electron donor P680. Upon single flash excitation of the dark-adapted sample, the decay kinetics could be described with lifetimes of 17 ns (∼50%) and 167 ns (∼30%), and a longer-lived component (∼20%). This kinetics are attributed to re-reduction of P680•+ by the donor side of PSII. In contrast, upon second-flash (with Δt between 5 μs and 100 ms) or repetitive excitation, the 819 nm absorption changes decayed with lifetimes of about 2 ns (∼60%) and 10 ns (∼30%), attributed to recombination of the primary radical pair P680•+ Pheo•- , and a small longer-lived component (∼10%). These data confirm that only the first STSF is capable of generating stable charge separation - leading to the reduction of QA ; and thus, the fluorescence yield increments elicited by the consecutive flashes must have a different physical origin. Our double-flash experiments indicate that the rate-limiting steps, detected by chlorophyll-a fluorescence, are not correlated with the turnover of P680.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19027797
003      
CZ-PrNML
005      
20190822092055.0
007      
ta
008      
190813s2019 dk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/ppl.12945 $2 doi
035    __
$a (PubMed)30790299
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a dk
100    1_
$a Sipka, Gábor $u Institute of Plant Biology, Laboratory of Photosynthetic Membranes, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
245    10
$a Redox transients of P680 associated with the incremental chlorophyll-a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated photosystem II core complex of Thermosynechococcus vulcanus / $c G. Sipka, P. Müller, K. Brettel, M. Magyar, L. Kovács, Q. Zhu, Y. Xiao, G. Han, PH. Lambrev, JR. Shen, G. Garab,
520    9_
$a Recent chlorophyll-a fluorescence yield measurements, using single-turnover saturating flashes (STSFs), have revealed the involvement of a rate-limiting step in the reactions following the charge separation induced by the first flash. As also shown here, in diuron-inhibited PSII core complexes isolated from Thermosynechococcus vulcanus the fluorescence maximum could only be reached by a train of STSFs. In order to elucidate the origin of the fluorescence yield increments in STSF series, we performed transient absorption measurements at 819 nm, reflecting the photooxidation and re-reduction kinetics of the primary electron donor P680. Upon single flash excitation of the dark-adapted sample, the decay kinetics could be described with lifetimes of 17 ns (∼50%) and 167 ns (∼30%), and a longer-lived component (∼20%). This kinetics are attributed to re-reduction of P680•+ by the donor side of PSII. In contrast, upon second-flash (with Δt between 5 μs and 100 ms) or repetitive excitation, the 819 nm absorption changes decayed with lifetimes of about 2 ns (∼60%) and 10 ns (∼30%), attributed to recombination of the primary radical pair P680•+ Pheo•- , and a small longer-lived component (∼10%). These data confirm that only the first STSF is capable of generating stable charge separation - leading to the reduction of QA ; and thus, the fluorescence yield increments elicited by the consecutive flashes must have a different physical origin. Our double-flash experiments indicate that the rate-limiting steps, detected by chlorophyll-a fluorescence, are not correlated with the turnover of P680.
650    _2
$a chlorofyl a $x metabolismus $7 D000077194
650    _2
$a sinice $x metabolismus $7 D000458
650    _2
$a oxidace-redukce $7 D010084
650    _2
$a fotosystém II - proteinový komplex $x metabolismus $7 D045332
655    _2
$a časopisecké články $7 D016428
700    1_
$a Müller, Pavel $u Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
700    1_
$a Brettel, Klaus $u Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
700    1_
$a Magyar, Melinda $u Institute of Plant Biology, Laboratory of Photosynthetic Membranes, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
700    1_
$a Kovács, László $u Institute of Plant Biology, Laboratory of Photosynthetic Membranes, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
700    1_
$a Zhu, Qingjun $u Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
700    1_
$a Xiao, Yanan $u Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
700    1_
$a Han, Guangye $u Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
700    1_
$a Lambrev, Petar H $u Institute of Plant Biology, Laboratory of Photosynthetic Membranes, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
700    1_
$a Shen, Jian-Ren $u Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China. Photosynthesis Research Center, Okayama University, Okayama, Japan.
700    1_
$a Garab, Győző $u Institute of Plant Biology, Laboratory of Photosynthetic Membranes, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary. Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
773    0_
$w MED00005316 $t Physiologia plantarum $x 1399-3054 $g Roč. 166, č. 1 (2019), s. 22-32
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30790299 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190822092334 $b ABA008
999    __
$a ok $b bmc $g 1432946 $s 1066257
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 166 $c 1 $d 22-32 $e 20190318 $i 1399-3054 $m Physiologia plantarum $n Physiol Plant $x MED00005316
GRA    __
$a LP2014/19 $p Lendület Program of the Hungarian Academy of Sciences
GRA    __
$a 31470339 $p National Natural Science Foundation of China
GRA    __
$a XDB17000000 $p Strategic Priority Research Program of Chinese Academy of Sciences
GRA    __
$a 2017YFA0503700 $p National Key R&D Program of China
GRA    __
$p French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INBS-05
GRA    __
$p EBSA
GRA    __
$a 124985 $p National Research Development and Innovation Office of Hungary
GRA    __
$a K 128679 $p National Research Development and Innovation Office of Hungary
GRA    __
$a TÉT_15-1-2016-0144 $p National Research Development and Innovation Office of Hungary
GRA    __
$a 124904 $p National Research Development and Innovation Office of Hungary
GRA    __
$a GINOP-2.3.2-15-2016-00001 $p National Research Development and Innovation Office of Hungary
LZP    __
$a Pubmed-20190813

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...