• Something wrong with this record ?

A residue of motif III positions the helicase domains of motor subunit HsdR in restriction-modification enzyme EcoR124I

D. Sinha, V. Bialevich, K. Shamayeva, A. Guzanova, A. Sisakova, E. Csefalvay, D. Reha, L. Krejci, J. Carey, M. Weiserova, R. Ettrich,

. 2018 ; 24 (7) : 176. [pub] 20180626

Language English Country Germany

Document type Journal Article

Type I restriction-modification enzymes differ significantly from the type II enzymes commonly used as molecular biology reagents. On hemi-methylated DNAs type I enzymes like the EcoR124I restriction-modification complex act as conventional adenine methylases at their specific target sequences, but unmethylated targets induce them to translocate thousands of base pairs through the stationary enzyme before cleaving distant sites nonspecifically. EcoR124I is a superfamily 2 DEAD-box helicase like eukaryotic double-strand DNA translocase Rad54, with two RecA-like helicase domains and seven characteristic sequence motifs that are implicated in translocation. In Rad54 a so-called extended region adjacent to motif III is involved in ATPase activity. Although the EcoR124I extended region bears sequence and structural similarities with Rad54, it does not influence ATPase or restriction activity as shown in this work, but mutagenesis of the conserved glycine residue of its motif III does alter ATPase and DNA cleavage activity. Through the lens of molecular dynamics, a full model of HsdR of EcoR124I based on available crystal structures allowed interpretation of functional effects of mutants in motif III and its extended region. The results indicate that the conserved glycine residue of motif III has a role in positioning the two helicase domains.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19000617
003      
CZ-PrNML
005      
20190111150154.0
007      
ta
008      
190107s2018 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00894-018-3722-8 $2 doi
035    __
$a (PubMed)29943199
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Sinha, Dhiraj $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic.
245    12
$a A residue of motif III positions the helicase domains of motor subunit HsdR in restriction-modification enzyme EcoR124I / $c D. Sinha, V. Bialevich, K. Shamayeva, A. Guzanova, A. Sisakova, E. Csefalvay, D. Reha, L. Krejci, J. Carey, M. Weiserova, R. Ettrich,
520    9_
$a Type I restriction-modification enzymes differ significantly from the type II enzymes commonly used as molecular biology reagents. On hemi-methylated DNAs type I enzymes like the EcoR124I restriction-modification complex act as conventional adenine methylases at their specific target sequences, but unmethylated targets induce them to translocate thousands of base pairs through the stationary enzyme before cleaving distant sites nonspecifically. EcoR124I is a superfamily 2 DEAD-box helicase like eukaryotic double-strand DNA translocase Rad54, with two RecA-like helicase domains and seven characteristic sequence motifs that are implicated in translocation. In Rad54 a so-called extended region adjacent to motif III is involved in ATPase activity. Although the EcoR124I extended region bears sequence and structural similarities with Rad54, it does not influence ATPase or restriction activity as shown in this work, but mutagenesis of the conserved glycine residue of its motif III does alter ATPase and DNA cleavage activity. Through the lens of molecular dynamics, a full model of HsdR of EcoR124I based on available crystal structures allowed interpretation of functional effects of mutants in motif III and its extended region. The results indicate that the conserved glycine residue of motif III has a role in positioning the two helicase domains.
650    _2
$a adenosintrifosfát $x chemie $7 D000255
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a DNA-helikasy $x chemie $x genetika $x metabolismus $7 D004265
650    _2
$a restrikční endonukleasy typu I $x chemie $x genetika $x metabolismus $7 D015253
650    _2
$a aktivace enzymů $7 D004789
650    _2
$a hydrolýza $7 D006868
650    _2
$a simulace molekulární dynamiky $7 D056004
650    _2
$a multienzymové komplexy $x chemie $7 D009097
650    _2
$a mutace $7 D009154
650    _2
$a analýza hlavních komponent $7 D025341
650    _2
$a konformace proteinů $7 D011487
650    12
$a interakční proteinové domény a motivy $7 D054730
650    _2
$a podjednotky proteinů $x chemie $x genetika $x metabolismus $7 D021122
655    _2
$a časopisecké články $7 D016428
700    1_
$a Bialevich, Vitali $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic.
700    1_
$a Shamayeva, Katsiaryna $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic.
700    1_
$a Guzanova, Alena $u Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Praha 4, Czech Republic.
700    1_
$a Sisakova, Alexandra $u Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 5/A7, 625 00, Brno, Czech Republic.
700    1_
$a Csefalvay, Eva $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic.
700    1_
$a Reha, David $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic. Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic.
700    1_
$a Krejci, Lumir $u Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 5/A7, 625 00, Brno, Czech Republic. National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic. International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic.
700    1_
$a Carey, Jannette $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic. Chemistry Department, Princeton University, Princeton, NJ, 08544-1009, USA.
700    1_
$a Weiserova, Marie $u Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Praha 4, Czech Republic.
700    1_
$a Ettrich, Rüdiger $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic. ettrich@nh.cas.cz. College of Biomedical Sciences, Larkin University, 18301 North Miami Avenue, Miami, FL, 33169, USA. ettrich@nh.cas.cz.
773    0_
$w MED00005762 $t Journal of molecular modeling $x 0948-5023 $g Roč. 24, č. 7 (2018), s. 176
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29943199 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20190111150400 $b ABA008
999    __
$a ok $b bmc $g 1364664 $s 1038740
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 24 $c 7 $d 176 $e 20180626 $i 0948-5023 $m Journal of molecular modeling $n J Mol Model $x MED00005762
LZP    __
$a Pubmed-20190107

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...