-
Je něco špatně v tomto záznamu ?
Sensitive operation of enzyme-based biodevices by advanced signal processing
S. Mazurenko, S. Bidmanova, M. Kotlanova, J. Damborsky, Z. Prokop,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-10-01
Open Access Digital Library
od 2006-01-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- biosenzitivní techniky metody MeSH
- chemické bojové látky analýza MeSH
- chlorované uhlovodíky analýza MeSH
- enzymy metabolismus MeSH
- ether analogy a deriváty analýza MeSH
- hexany analýza MeSH
- hydrolasy metabolismus MeSH
- kalibrace MeSH
- látky znečišťující životní prostředí analýza MeSH
- lyasy metabolismus MeSH
- počítačové zpracování signálu * MeSH
- senzitivita a specificita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Analytical devices that combine sensitive biological component with a physicochemical detector hold a great potential for various applications, e.g., environmental monitoring, food analysis or medical diagnostics. Continuous efforts to develop inexpensive sensitive biodevices for detecting target substances typically focus on the design of biorecognition elements and their physical implementation, while the methods for processing signals generated by such devices have received far less attention. Here, we present fundamental considerations related to signal processing in biosensor design and investigate how undemanding signal treatment facilitates calibration and operation of enzyme-based biodevices. Our signal treatment approach was thoroughly validated with two model systems: (i) a biodevice for detecting chemical warfare agents and environmental pollutants based on the activity of haloalkane dehalogenase, with the sensitive range for bis(2-chloroethyl) ether of 0.01-0.8 mM and (ii) a biodevice for detecting hazardous pesticides based on the activity of γ-hexachlorocyclohexane dehydrochlorinase with the sensitive range for γ-hexachlorocyclohexane of 0.01-0.3 mM. We demonstrate that the advanced signal processing based on curve fitting enables precise quantification of parameters important for sensitive operation of enzyme-based biodevices, including: (i) automated exclusion of signal regions with substantial noise, (ii) derivation of calibration curves with significantly reduced error, (iii) shortening of the detection time, and (iv) reliable extrapolation of the signal to the initial conditions. The presented simple signal curve fitting supports rational design of optimal system setup by explicit and flexible quantification of its properties and will find a broad use in the development of sensitive and robust biodevices.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19000637
- 003
- CZ-PrNML
- 005
- 20190110110005.0
- 007
- ta
- 008
- 190107s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0198913 $2 doi
- 035 __
- $a (PubMed)29912920
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Mazurenko, Stanislav $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic.
- 245 10
- $a Sensitive operation of enzyme-based biodevices by advanced signal processing / $c S. Mazurenko, S. Bidmanova, M. Kotlanova, J. Damborsky, Z. Prokop,
- 520 9_
- $a Analytical devices that combine sensitive biological component with a physicochemical detector hold a great potential for various applications, e.g., environmental monitoring, food analysis or medical diagnostics. Continuous efforts to develop inexpensive sensitive biodevices for detecting target substances typically focus on the design of biorecognition elements and their physical implementation, while the methods for processing signals generated by such devices have received far less attention. Here, we present fundamental considerations related to signal processing in biosensor design and investigate how undemanding signal treatment facilitates calibration and operation of enzyme-based biodevices. Our signal treatment approach was thoroughly validated with two model systems: (i) a biodevice for detecting chemical warfare agents and environmental pollutants based on the activity of haloalkane dehalogenase, with the sensitive range for bis(2-chloroethyl) ether of 0.01-0.8 mM and (ii) a biodevice for detecting hazardous pesticides based on the activity of γ-hexachlorocyclohexane dehydrochlorinase with the sensitive range for γ-hexachlorocyclohexane of 0.01-0.3 mM. We demonstrate that the advanced signal processing based on curve fitting enables precise quantification of parameters important for sensitive operation of enzyme-based biodevices, including: (i) automated exclusion of signal regions with substantial noise, (ii) derivation of calibration curves with significantly reduced error, (iii) shortening of the detection time, and (iv) reliable extrapolation of the signal to the initial conditions. The presented simple signal curve fitting supports rational design of optimal system setup by explicit and flexible quantification of its properties and will find a broad use in the development of sensitive and robust biodevices.
- 650 _2
- $a biosenzitivní techniky $x metody $7 D015374
- 650 _2
- $a kalibrace $7 D002138
- 650 _2
- $a chemické bojové látky $x analýza $7 D002619
- 650 _2
- $a látky znečišťující životní prostředí $x analýza $7 D004785
- 650 _2
- $a enzymy $x metabolismus $7 D004798
- 650 _2
- $a ether $x analogy a deriváty $x analýza $7 D004986
- 650 _2
- $a hexany $x analýza $7 D006586
- 650 _2
- $a chlorované uhlovodíky $x analýza $7 D006843
- 650 _2
- $a hydrolasy $x metabolismus $7 D006867
- 650 _2
- $a lyasy $x metabolismus $7 D008190
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 12
- $a počítačové zpracování signálu $7 D012815
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Bidmanova, Sarka $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- 700 1_
- $a Kotlanova, Marketa $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic. Enantis, s r.o., Brno, Czech Republic.
- 700 1_
- $a Damborsky, Jiri $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- 700 1_
- $a Prokop, Zbynek $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 13, č. 6 (2018), s. e0198913
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29912920 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190107 $b ABA008
- 991 __
- $a 20190110110209 $b ABA008
- 999 __
- $a ok $b bmc $g 1363886 $s 1038760
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 13 $c 6 $d e0198913 $e 20180618 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20190107