-
Je něco špatně v tomto záznamu ?
Dating the Species Network: Allopolyploidy and Repetitive DNA Evolution in American Daisies (Melampodium sect. Melampodium, Asteraceae)
J. Mccann, TS. Jang, J. Macas, GM. Schneeweiss, NJ. Matzke, P. Novák, TF. Stuessy, JL. Villaseñor, H. Weiss-Schneeweiss,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29562303
DOI
10.1093/sysbio/syy024
Knihovny.cz E-zdroje
- MeSH
- Asteraceae klasifikace genetika MeSH
- DNA rostlinná genetika MeSH
- fylogeneze MeSH
- genom rostlinný genetika MeSH
- molekulární evoluce * MeSH
- polyploidie MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Allopolyploidy has played an important role in the evolution of the flowering plants. Genome mergers are often accompanied by significant and rapid alterations of genome size and structure via chromosomal rearrangements and altered dynamics of tandem and dispersed repetitive DNA families. Recent developments in sequencing technologies and bioinformatic methods allow for a comprehensive investigation of the repetitive component of plant genomes. Interpretation of evolutionary dynamics following allopolyploidization requires both the knowledge of parentage and the age of origin of an allopolyploid. Whereas parentage is typically inferred from cytogenetic and phylogenetic data, age inference is hampered by the reticulate nature of the phylogenetic relationships. Treating subgenomes of allopolyploids as if they belonged to different species (i.e., no recombination among subgenomes) and applying cross-bracing (i.e., putting a constraint on the age difference of nodes pertaining to the same event), we can infer the age of allopolyploids within the framework of the multispecies coalescent within BEAST2. Together with a comprehensive characterization of the repetitive DNA fraction using the RepeatExplorer pipeline, we apply the dating approach in a group of closely related allopolyploids and their progenitor species in the plant genus Melampodium (Asteraceae). We dated the origin of both the allotetraploid, Melampodium strigosum, and its two allohexaploid derivatives, Melampodium pringlei and Melampodium sericeum, which share both parentage and the direction of the cross, to the Pleistocene ($<$1.4 Ma). Thus, Pleistocene climatic fluctuations may have triggered formation of allopolyploids possibly in short intervals, contributing to difficulties in inferring the precise temporal order of allopolyploid species divergence of M. sericeum and M. pringlei. The relatively recent origin of the allopolyploids likely played a role in the near-absence of major changes in the repetitive fraction of the polyploids' genomes. The repetitive elements most affected by the postpolyploidization changes represented retrotransposons of the Ty1-copia lineage Maximus and, to a lesser extent, also Athila elements of Ty3-gypsy family.
Department of Botany and Biodiversity Research University of Vienna Rennweg 14 A 1030 Vienna Austria
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19000859
- 003
- CZ-PrNML
- 005
- 20190122113309.0
- 007
- ta
- 008
- 190107s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/sysbio/syy024 $2 doi
- 035 __
- $a (PubMed)29562303
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Mccann, Jamie $u Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria.
- 245 10
- $a Dating the Species Network: Allopolyploidy and Repetitive DNA Evolution in American Daisies (Melampodium sect. Melampodium, Asteraceae) / $c J. Mccann, TS. Jang, J. Macas, GM. Schneeweiss, NJ. Matzke, P. Novák, TF. Stuessy, JL. Villaseñor, H. Weiss-Schneeweiss,
- 520 9_
- $a Allopolyploidy has played an important role in the evolution of the flowering plants. Genome mergers are often accompanied by significant and rapid alterations of genome size and structure via chromosomal rearrangements and altered dynamics of tandem and dispersed repetitive DNA families. Recent developments in sequencing technologies and bioinformatic methods allow for a comprehensive investigation of the repetitive component of plant genomes. Interpretation of evolutionary dynamics following allopolyploidization requires both the knowledge of parentage and the age of origin of an allopolyploid. Whereas parentage is typically inferred from cytogenetic and phylogenetic data, age inference is hampered by the reticulate nature of the phylogenetic relationships. Treating subgenomes of allopolyploids as if they belonged to different species (i.e., no recombination among subgenomes) and applying cross-bracing (i.e., putting a constraint on the age difference of nodes pertaining to the same event), we can infer the age of allopolyploids within the framework of the multispecies coalescent within BEAST2. Together with a comprehensive characterization of the repetitive DNA fraction using the RepeatExplorer pipeline, we apply the dating approach in a group of closely related allopolyploids and their progenitor species in the plant genus Melampodium (Asteraceae). We dated the origin of both the allotetraploid, Melampodium strigosum, and its two allohexaploid derivatives, Melampodium pringlei and Melampodium sericeum, which share both parentage and the direction of the cross, to the Pleistocene ($<$1.4 Ma). Thus, Pleistocene climatic fluctuations may have triggered formation of allopolyploids possibly in short intervals, contributing to difficulties in inferring the precise temporal order of allopolyploid species divergence of M. sericeum and M. pringlei. The relatively recent origin of the allopolyploids likely played a role in the near-absence of major changes in the repetitive fraction of the polyploids' genomes. The repetitive elements most affected by the postpolyploidization changes represented retrotransposons of the Ty1-copia lineage Maximus and, to a lesser extent, also Athila elements of Ty3-gypsy family.
- 650 _2
- $a Asteraceae $x klasifikace $x genetika $7 D019659
- 650 _2
- $a DNA rostlinná $x genetika $7 D018744
- 650 12
- $a molekulární evoluce $7 D019143
- 650 _2
- $a genom rostlinný $x genetika $7 D018745
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a polyploidie $7 D011123
- 650 _2
- $a repetitivní sekvence nukleových kyselin $x genetika $7 D012091
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Jang, Tae-Soo $u Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria. Department of Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, South Korea.
- 700 1_
- $a Macas, Jiri $u Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, CZ-37005, Ceské Budejovice, Czech Republic.
- 700 1_
- $a Schneeweiss, Gerald M $u Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria.
- 700 1_
- $a Matzke, Nicholas J $u Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
- 700 1_
- $a Novák, Petr $u Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, CZ-37005, Ceské Budejovice, Czech Republic.
- 700 1_
- $a Stuessy, Tod F $u Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria. Herbarium and Department of Evolution, Ecology and Organismal Biology, 1315 Kinnear Road, The Ohio State University, Columbus, Ohio 43212, USA.
- 700 1_
- $a Villaseñor, José L $u Department of Botany, UNAM, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, MX-04510 México, D.F., México.
- 700 1_
- $a Weiss-Schneeweiss, Hanna $u Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria.
- 773 0_
- $w MED00005998 $t Systematic biology $x 1076-836X $g Roč. 67, č. 6 (2018), s. 1010-1024
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29562303 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190107 $b ABA008
- 991 __
- $a 20190122113529 $b ABA008
- 999 __
- $a ok $b bmc $g 1364850 $s 1038982
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 67 $c 6 $d 1010-1024 $i 1076-836X $m Systematic biology $n Syst Biol $x MED00005998
- LZP __
- $a Pubmed-20190107