• Something wrong with this record ?

Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry

CHL. Patty, DA. Luo, F. Snik, F. Ariese, WJ. Buma, IL. Ten Kate, RJM. van Spanning, WB. Sparks, TA. Germer, G. Garab, MW. Kudenov,

. 2018 ; 1862 (6) : 1350-1363. [pub] 20180309

Language English Country Netherlands

Document type Journal Article, Research Support, Non-U.S. Gov't

Spectropolarimetry of intact plant leaves allows to probe the molecular architecture of vegetation photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological information. In addition to the molecular signals due to the photosynthetic machinery, the cell structure and its arrangement within a leaf can create and modify polarization signals. Using Mueller matrix polarimetry with rotating retarder modulation, we have visualized spatial variations in polarization in transmission around the chlorophyll a absorbance band from 650 nm to 710 nm. We show linear and circular polarization measurements of maple leaves and cultivated maize leaves and discuss the corresponding Mueller matrices and the Mueller matrix decompositions, which show distinct features in diattenuation, polarizance, retardance and depolarization. Importantly, while normal leaf tissue shows a typical split signal with both a negative and a positive peak in the induced fractional circular polarization and circular dichroism, the signals close to the veins only display a negative band. The results are similar to the negative band as reported earlier for single macrodomains. We discuss the possible role of the chloroplast orientation around the veins as a cause of this phenomenon. Systematic artefacts are ruled out as three independent measurements by different instruments gave similar results. These results provide better insight into circular polarization measurements on whole leaves and options for vegetation remote sensing using circular polarization.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19000879
003      
CZ-PrNML
005      
20190114094508.0
007      
ta
008      
190107s2018 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bbagen.2018.03.005 $2 doi
035    __
$a (PubMed)29526506
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Patty, C H Lucas $u Molecular Cell Physiology, VU Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands. Electronic address: lucas.patty@vu.nl.
245    10
$a Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry / $c CHL. Patty, DA. Luo, F. Snik, F. Ariese, WJ. Buma, IL. Ten Kate, RJM. van Spanning, WB. Sparks, TA. Germer, G. Garab, MW. Kudenov,
520    9_
$a Spectropolarimetry of intact plant leaves allows to probe the molecular architecture of vegetation photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological information. In addition to the molecular signals due to the photosynthetic machinery, the cell structure and its arrangement within a leaf can create and modify polarization signals. Using Mueller matrix polarimetry with rotating retarder modulation, we have visualized spatial variations in polarization in transmission around the chlorophyll a absorbance band from 650 nm to 710 nm. We show linear and circular polarization measurements of maple leaves and cultivated maize leaves and discuss the corresponding Mueller matrices and the Mueller matrix decompositions, which show distinct features in diattenuation, polarizance, retardance and depolarization. Importantly, while normal leaf tissue shows a typical split signal with both a negative and a positive peak in the induced fractional circular polarization and circular dichroism, the signals close to the veins only display a negative band. The results are similar to the negative band as reported earlier for single macrodomains. We discuss the possible role of the chloroplast orientation around the veins as a cause of this phenomenon. Systematic artefacts are ruled out as three independent measurements by different instruments gave similar results. These results provide better insight into circular polarization measurements on whole leaves and options for vegetation remote sensing using circular polarization.
650    12
$a algoritmy $7 D000465
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a světlo $7 D008027
650    _2
$a polarizační mikroskopie $x metody $7 D008859
650    12
$a fotosyntéza $7 D010788
650    _2
$a listy rostlin $x růst a vývoj $x metabolismus $7 D018515
650    _2
$a refraktometrie $x metody $7 D012031
650    _2
$a kukuřice setá $x růst a vývoj $x metabolismus $7 D003313
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Luo, David A $u Optical Sensing Lab, Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA.
700    1_
$a Snik, Frans $u Leiden Observatory, Leiden University, P.O. Box 9513, Leiden 2300 RA, The Netherlands.
700    1_
$a Ariese, Freek $u LaserLaB, VU Amsterdam, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands.
700    1_
$a Buma, Wybren Jan $u HIMS, Photonics Group, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
700    1_
$a Ten Kate, Inge Loes $u Department of Earth Sciences, Utrecht University, Budapestlaan 4, Utrecht 3584 CD, The Netherlands.
700    1_
$a van Spanning, Rob J M $u Systems Bioinformatics, VU Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands.
700    1_
$a Sparks, William B $u Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA.
700    1_
$a Germer, Thomas A $u Senior Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
700    1_
$a Garab, Győző $u Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary; Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, Slezská Ostrava, Czech Republic.
700    1_
$a Kudenov, Michael W $u Optical Sensing Lab, Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA.
773    0_
$w MED00000717 $t Biochimica et biophysica acta. General subjects $x 0304-4165 $g Roč. 1862, č. 6 (2018), s. 1350-1363
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29526506 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20190114094717 $b ABA008
999    __
$a ok $b bmc $g 1364865 $s 1039002
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 1862 $c 6 $d 1350-1363 $e 20180309 $i 0304-4165 $m Biochimica et biophysica acta. G, General subjects $n Biochem Biophys Acta $x MED00000717
LZP    __
$a Pubmed-20190107

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...