-
Je něco špatně v tomto záznamu ?
Please do not recycle! Translation reinitiation in microbes and higher eukaryotes
S. Gunišová, V. Hronová, MP. Mohammad, AG. Hinnebusch, LS. Valášek,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem, přehledy
NLK
PubMed Central
od 2015
ProQuest Central
od 2015-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2015-01-01 do Před 1 rokem
Oxford Journals Open Access Collection
od 1985-04-01
PubMed
29281028
DOI
10.1093/femsre/fux059
Knihovny.cz E-zdroje
- MeSH
- Bacteria genetika metabolismus MeSH
- Eukaryota genetika MeSH
- lidé MeSH
- otevřené čtecí rámce genetika MeSH
- proteosyntéza genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Intramural MeSH
Protein production must be strictly controlled at its beginning and end to synthesize a polypeptide that faithfully copies genetic information carried in the encoding mRNA. In contrast to viruses and prokaryotes, the majority of mRNAs in eukaryotes contain only one coding sequence, resulting in production of a single protein. There are, however, many exceptional mRNAs that either carry short open reading frames upstream of the main coding sequence (uORFs) or even contain multiple long ORFs. A wide variety of mechanisms have evolved in microbes and higher eukaryotes to prevent recycling of some or all translational components upon termination of the first translated ORF in such mRNAs and thereby enable subsequent translation of the next uORF or downstream coding sequence. These specialized reinitiation mechanisms are often regulated to couple translation of the downstream ORF to various stimuli. Here we review all known instances of both short uORF-mediated and long ORF-mediated reinitiation and present our current understanding of the underlying molecular mechanisms of these intriguing modes of translational control.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19001010
- 003
- CZ-PrNML
- 005
- 20190118114533.0
- 007
- ta
- 008
- 190107s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/femsre/fux059 $2 doi
- 035 __
- $a (PubMed)29281028
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Gunišová, Stanislava $u Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague, 142 20, the Czech Republic.
- 245 10
- $a Please do not recycle! Translation reinitiation in microbes and higher eukaryotes / $c S. Gunišová, V. Hronová, MP. Mohammad, AG. Hinnebusch, LS. Valášek,
- 520 9_
- $a Protein production must be strictly controlled at its beginning and end to synthesize a polypeptide that faithfully copies genetic information carried in the encoding mRNA. In contrast to viruses and prokaryotes, the majority of mRNAs in eukaryotes contain only one coding sequence, resulting in production of a single protein. There are, however, many exceptional mRNAs that either carry short open reading frames upstream of the main coding sequence (uORFs) or even contain multiple long ORFs. A wide variety of mechanisms have evolved in microbes and higher eukaryotes to prevent recycling of some or all translational components upon termination of the first translated ORF in such mRNAs and thereby enable subsequent translation of the next uORF or downstream coding sequence. These specialized reinitiation mechanisms are often regulated to couple translation of the downstream ORF to various stimuli. Here we review all known instances of both short uORF-mediated and long ORF-mediated reinitiation and present our current understanding of the underlying molecular mechanisms of these intriguing modes of translational control.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a Bacteria $x genetika $x metabolismus $7 D001419
- 650 _2
- $a Eukaryota $x genetika $7 D056890
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a otevřené čtecí rámce $x genetika $7 D016366
- 650 _2
- $a proteosyntéza $x genetika $x fyziologie $7 D014176
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Intramural $7 D052060
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Hronová, Vladislava $u Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague, 142 20, the Czech Republic.
- 700 1_
- $a Mohammad, Mahabub Pasha $u Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague, 142 20, the Czech Republic.
- 700 1_
- $a Hinnebusch, Alan G $u Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
- 700 1_
- $a Valášek, Leoš Shivaya $u Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague, 142 20, the Czech Republic.
- 773 0_
- $w MED00001793 $t FEMS microbiology reviews $x 1574-6976 $g Roč. 42, č. 2 (2018), s. 165-192
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29281028 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190107 $b ABA008
- 991 __
- $a 20190118114748 $b ABA008
- 999 __
- $a ok $b bmc $g 1364961 $s 1039133
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 42 $c 2 $d 165-192 $i 1574-6976 $m FEMS microbiology reviews $n FEMS Microbiol Rev $x MED00001793
- LZP __
- $a Pubmed-20190107